Букеты, живые цветы, комнатные растения

Аппроксимация опытных данных. Метод наименьших квадратов

После выравнивания получим функцию следующего вида: g (x) = x + 1 3 + 1 .

Мы можем аппроксимировать эти данные с помощью линейной зависимости y = a x + b , вычислив соответствующие параметры. Для этого нам нужно будет применить так называемый метод наименьших квадратов. Также потребуется сделать чертеж, чтобы проверить, какая линия будет лучше выравнивать экспериментальные данные.

В чем именно заключается МНК (метод наименьших квадратов)

Главное, что нам нужно сделать, – это найти такие коэффициенты линейной зависимости, при которых значение функции двух переменных F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 будет наименьшим. Иначе говоря, при определенных значениях a и b сумма квадратов отклонений представленных данных от получившейся прямой будет иметь минимальное значение. В этом и состоит смысл метода наименьших квадратов. Все, что нам надо сделать для решения примера – это найти экстремум функции двух переменных.

Как вывести формулы для вычисления коэффициентов

Для того чтобы вывести формулы для вычисления коэффициентов, нужно составить и решить систему уравнений с двумя переменными. Для этого мы вычисляем частные производные выражения F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 по a и b и приравниваем их к 0 .

δ F (a , b) δ a = 0 δ F (a , b) δ b = 0 ⇔ - 2 ∑ i = 1 n (y i - (a x i + b)) x i = 0 - 2 ∑ i = 1 n (y i - (a x i + b)) = 0 ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + ∑ i = 1 n b = ∑ i = 1 n y i ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + n b = ∑ i = 1 n y i

Для решения системы уравнений можно использовать любые методы, например, подстановку или метод Крамера. В результате у нас должны получиться формулы, с помощью которых вычисляются коэффициенты по методу наименьших квадратов.

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n

Мы вычислили значения переменных, при который функция
F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 примет минимальное значение. В третьем пункте мы докажем, почему оно является именно таким.

Это и есть применение метода наименьших квадратов на практике. Его формула, которая применяется для поиска параметра a , включает в себя ∑ i = 1 n x i , ∑ i = 1 n y i , ∑ i = 1 n x i y i , ∑ i = 1 n x i 2 , а также параметр
n – им обозначено количество экспериментальных данных. Советуем вам вычислять каждую сумму отдельно. Значение коэффициента b вычисляется сразу после a .

Обратимся вновь к исходному примеру.

Пример 1

Здесь у нас n равен пяти. Чтобы было удобнее вычислять нужные суммы, входящие в формулы коэффициентов, заполним таблицу.

i = 1 i = 2 i = 3 i = 4 i = 5 ∑ i = 1 5
x i 0 1 2 4 5 12
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 12 , 9
x i y i 0 2 , 4 5 , 2 11 , 2 15 33 , 8
x i 2 0 1 4 16 25 46

Решение

Четвертая строка включает в себя данные, полученные при умножении значений из второй строки на значения третьей для каждого отдельного i . Пятая строка содержит данные из второй, возведенные в квадрат. В последнем столбце приводятся суммы значений отдельных строчек.

Воспользуемся методом наименьших квадратов, чтобы вычислить нужные нам коэффициенты a и b . Для этого подставим нужные значения из последнего столбца и подсчитаем суммы:

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n ⇒ a = 5 · 33 , 8 - 12 · 12 , 9 5 · 46 - 12 2 b = 12 , 9 - a · 12 5 ⇒ a ≈ 0 , 165 b ≈ 2 , 184

У нас получилось, что нужная аппроксимирующая прямая будет выглядеть как y = 0 , 165 x + 2 , 184 . Теперь нам надо определить, какая линия будет лучше аппроксимировать данные – g (x) = x + 1 3 + 1 или 0 , 165 x + 2 , 184 . Произведем оценку с помощью метода наименьших квадратов.

Чтобы вычислить погрешность, нам надо найти суммы квадратов отклонений данных от прямых σ 1 = ∑ i = 1 n (y i - (a x i + b i)) 2 и σ 2 = ∑ i = 1 n (y i - g (x i)) 2 , минимальное значение будет соответствовать более подходящей линии.

σ 1 = ∑ i = 1 n (y i - (a x i + b i)) 2 = = ∑ i = 1 5 (y i - (0 , 165 x i + 2 , 184)) 2 ≈ 0 , 019 σ 2 = ∑ i = 1 n (y i - g (x i)) 2 = = ∑ i = 1 5 (y i - (x i + 1 3 + 1)) 2 ≈ 0 , 096

Ответ: поскольку σ 1 < σ 2 , то прямой, наилучшим образом аппроксимирующей исходные данные, будет
y = 0 , 165 x + 2 , 184 .

Метод наименьших квадратов наглядно показан на графической иллюстрации. С помощью красной линии отмечена прямая g (x) = x + 1 3 + 1 , синей – y = 0 , 165 x + 2 , 184 . Исходные данные обозначены розовыми точками.

Поясним, для чего именно нужны приближения подобного вида.

Они могут быть использованы в задачах, требующих сглаживания данных, а также в тех, где данные надо интерполировать или экстраполировать. Например, в задаче, разобранной выше, можно было бы найти значение наблюдаемой величины y при x = 3 или при x = 6 . Таким примерам мы посвятили отдельную статью.

Доказательство метода МНК

Чтобы функция приняла минимальное значение при вычисленных a и b , нужно, чтобы в данной точке матрица квадратичной формы дифференциала функции вида F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 была положительно определенной. Покажем, как это должно выглядеть.

Пример 2

У нас есть дифференциал второго порядка следующего вида:

d 2 F (a ; b) = δ 2 F (a ; b) δ a 2 d 2 a + 2 δ 2 F (a ; b) δ a δ b d a d b + δ 2 F (a ; b) δ b 2 d 2 b

Решение

δ 2 F (a ; b) δ a 2 = δ δ F (a ; b) δ a δ a = = δ - 2 ∑ i = 1 n (y i - (a x i + b)) x i δ a = 2 ∑ i = 1 n (x i) 2 δ 2 F (a ; b) δ a δ b = δ δ F (a ; b) δ a δ b = = δ - 2 ∑ i = 1 n (y i - (a x i + b)) x i δ b = 2 ∑ i = 1 n x i δ 2 F (a ; b) δ b 2 = δ δ F (a ; b) δ b δ b = δ - 2 ∑ i = 1 n (y i - (a x i + b)) δ b = 2 ∑ i = 1 n (1) = 2 n

Иначе говоря, можно записать так: d 2 F (a ; b) = 2 ∑ i = 1 n (x i) 2 d 2 a + 2 · 2 ∑ x i i = 1 n d a d b + (2 n) d 2 b .

Мы получили матрицу квадратичной формы вида M = 2 ∑ i = 1 n (x i) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n .

В этом случае значения отдельных элементов не будут меняться в зависимости от a и b . Является ли эта матрица положительно определенной? Чтобы ответить на этот вопрос, проверим, являются ли ее угловые миноры положительными.

Вычисляем угловой минор первого порядка: 2 ∑ i = 1 n (x i) 2 > 0 . Поскольку точки x i не совпадают, то неравенство является строгим. Будем иметь это в виду при дальнейших расчетах.

Вычисляем угловой минор второго порядка:

d e t (M) = 2 ∑ i = 1 n (x i) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n = 4 n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2

После этого переходим к доказательству неравенства n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 с помощью математической индукции.

  1. Проверим, будет ли данное неравенство справедливым при произвольном n . Возьмем 2 и подсчитаем:

2 ∑ i = 1 2 (x i) 2 - ∑ i = 1 2 x i 2 = 2 x 1 2 + x 2 2 - x 1 + x 2 2 = = x 1 2 - 2 x 1 x 2 + x 2 2 = x 1 + x 2 2 > 0

У нас получилось верное равенство (если значения x 1 и x 2 не будут совпадать).

  1. Сделаем предположение, что данное неравенство будет верным для n , т.е. n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 – справедливо.
  2. Теперь докажем справедливость при n + 1 , т.е. что (n + 1) ∑ i = 1 n + 1 (x i) 2 - ∑ i = 1 n + 1 x i 2 > 0 , если верно n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 .

Вычисляем:

(n + 1) ∑ i = 1 n + 1 (x i) 2 - ∑ i = 1 n + 1 x i 2 = = (n + 1) ∑ i = 1 n (x i) 2 + x n + 1 2 - ∑ i = 1 n x i + x n + 1 2 = = n ∑ i = 1 n (x i) 2 + n · x n + 1 2 + ∑ i = 1 n (x i) 2 + x n + 1 2 - - ∑ i = 1 n x i 2 + 2 x n + 1 ∑ i = 1 n x i + x n + 1 2 = = ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + n · x n + 1 2 - x n + 1 ∑ i = 1 n x i + ∑ i = 1 n (x i) 2 = = ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + x n + 1 2 - 2 x n + 1 x 1 + x 1 2 + + x n + 1 2 - 2 x n + 1 x 2 + x 2 2 + . . . + x n + 1 2 - 2 x n + 1 x 1 + x n 2 = = n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + + (x n + 1 - x 1) 2 + (x n + 1 - x 2) 2 + . . . + (x n - 1 - x n) 2 > 0

Выражение, заключенное в фигурные скобки, будет больше 0 (исходя из того, что мы предполагали в пункте 2), и остальные слагаемые будут больше 0 , поскольку все они являются квадратами чисел. Мы доказали неравенство.

Ответ: найденные a и b будут соответствовать наименьшему значению функции F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 , значит, они являются искомыми параметрами метода наименьших квадратов (МНК).

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Метод наименьших квадратов (МНК) позволяет оценивать различные величины, используя результаты множества измерений, содержащих случайные ошибки.

Характеристика МНК

Основная идея данного метода состоит в том, что в качестве критерия точности решения задачи рассматривается сумма квадратов ошибок, которую стремятся свести к минимуму. При использовании этого метода можно применять как численный, так и аналитический подход.

В частности, в качестве численной реализации метод наименьших квадратов подразумевает проведение как можно большего числа измерений неизвестной случайной величины. Причем, чем больше вычислений, тем точнее будет решение. На этом множестве вычислений (исходных данных) получают другое множество предполагаемых решений, из которого затем выбирается наилучшее. Если множество решений параметризировать, то метод наименьших квадратов сведется к поиску оптимального значения параметров.

В качестве аналитического подхода к реализации МНК на множестве исходных данных (измерений) и предполагаемом множестве решений определяется некоторая (функционал), которую можно выразить формулой, получаемой в качестве некоторой гипотезы, требующей подтверждения. В этом случае метод наименьших квадратов сводится к нахождению минимума этого функционала на множестве квадратов ошибок исходных данных.

Заметьте, что не сами ошибки, а именно квадраты ошибок. Почему? Дело в том, что зачастую отклонения измерений от точного значения бывают как положительными, так и отрицательными. При определении средней простое суммирование может привести к неверному выводу о качестве оценки, поскольку взаимное уничтожение положительных и отрицательных значений понизит мощность выборки множества измерений. А, следовательно, и точность оценки.

Для того чтобы этого не произошло, и суммируют квадраты отклонений. Даже более того, чтобы выровнять размерность измеряемой величины и итоговой оценки, из суммы квадратов погрешностей извлекают

Некоторые приложения МНК

МНК широко используется в различных областях. Например, в теории вероятностей и математической статистике метод используется для определения такой характеристики случайной величины, как среднее квадратическое отклонение, определяющей ширину диапазона значений случайной величины.

Метод наименьших квадратов (МНК, англ. Ordinary Least Squares, OLS ) -- математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функцией. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Сущность метода наименьших квадратов

Пусть -- набор неизвестных переменных (параметров), -- совокупность функций от этого набора переменных. Задача заключается в подборе таких значений x, чтобы значения этих функций были максимально близки к некоторым значениям. По существу речь идет о «решении» переопределенной системы уравнений в указанном смысле максимальной близости левой и правой частей системы. Сущность МНК заключается в выборе в качестве «меры близости» суммы квадратов отклонений левых и правых частей -- . Таким образом, сущность МНК может быть выражена следующим образом:

В случае, если система уравнений имеет решение, то минимум суммы квадратов будет равен нулю и могут быть найдены точные решения системы уравнений аналитически или, например, различными численными методами оптимизации. Если система переопределена, то есть, говоря нестрого, количество независимых уравнений больше количества искомых переменных, то система не имеет точного решения и метод наименьших квадратов позволяет найти некоторый «оптимальный» вектор в смысле максимальной близости векторов и или максимальной близости вектора отклонений к нулю (близость понимается в смысле евклидова расстояния).

Пример -- система линейных уравнений

В частности, метод наименьших квадратов может использоваться для «решения» системы линейных уравнений

где матрица не квадратная, а прямоугольная размера (точнее ранг матрицы A больше количества искомых переменных).

Такая система уравнений, в общем случае не имеет решения. Поэтому эту систему можно «решить» только в смысле выбора такого вектора, чтобы минимизировать «расстояние» между векторами и. Для этого можно применить критерий минимизации суммы квадратов разностей левой и правой частей уравнений системы, то есть. Нетрудно показать, что решение этой задачи минимизации приводит к решению следующей системы уравнений

Используя оператор псевдоинверсии, решение можно переписать так:

где -- псевдообратная матрица для.

Данную задачу также можно «решить» используя так называемый взвешенный МНК (см. ниже), когда разные уравнения системы получают разный вес из теоретических соображений.

Строгое обоснование и установление границ содержательной применимости метода даны А. А. Марковым и А. Н. Колмогоровым.

МНК в регрессионном анализе (аппроксимация данных)[править | править вики-текст] Пусть имеется значений некоторой переменной (это могут быть результаты наблюдений, экспериментов и т. д.) и соответствующих переменных. Задача заключается в том, чтобы взаимосвязь между и аппроксимировать некоторой функцией, известной с точностью до некоторых неизвестных параметров, то есть фактически найти наилучшие значения параметров, максимально приближающие значения к фактическим значениям. Фактически это сводится к случаю «решения» переопределенной системы уравнений относительно:

В регрессионном анализе и в частности в эконометрике используются вероятностные модели зависимости между переменными

где -- так называемые случайные ошибки модели.

Соответственно, отклонения наблюдаемых значений от модельных предполагается уже в самой модели. Сущность МНК (обычного, классического) заключается в том, чтобы найти такие параметры, при которых сумма квадратов отклонений (ошибок, для регрессионных моделей их часто называют остатками регрессии) будет минимальной:

где -- англ. Residual Sum of Squares определяется как:

В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS -- англ. Non-Linear Least Squares). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции, продифференцировав её по неизвестным параметрам, приравняв производные к нулю и решив полученную систему уравнений:

МНК в случае линейной регрессии[править | править вики-текст]

Пусть регрессионная зависимость является линейной:

Пусть y -- вектор-столбец наблюдений объясняемой переменной, а -- это -матрица наблюдений факторов (строки матрицы -- векторы значений факторов в данном наблюдении, по столбцам -- вектор значений данного фактора во всех наблюдениях). Матричное представление линейной модели имеет вид:

Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны

соответственно сумма квадратов остатков регрессии будет равна

Дифференцируя эту функцию по вектору параметров и приравняв производные к нулю, получим систему уравнений (в матричной форме):

В расшифрованной матричной форме эта система уравнений выглядит следующим образом:


где все суммы берутся по всем допустимым значениям.

Если в модель включена константа (как обычно), то при всех, поэтому в левом верхнем углу матрицы системы уравнений находится количество наблюдений, а в остальных элементах первой строки и первого столбца -- просто суммы значений переменных: и первый элемент правой части системы -- .

Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:

Для аналитических целей оказывается полезным последнее представление этой формулы (в системе уравнений при делении на n, вместо сумм фигурируют средние арифметические). Если в регрессионной модели данные центрированы, то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая -- вектор ковариаций факторов с зависимой переменной. Если кроме того данные ещё инормированы на СКО (то есть в конечном итоге стандартизированы), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор -- вектора выборочных корреляций факторов с зависимой переменной.

Немаловажное свойство МНК-оценок для моделей с константой -- линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:

В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое, известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой -- удовлетворяет критерию минимума суммы квадратов отклонений от неё.

Простейшие частные случаи[править | править вики-текст]

В случае парной линейной регрессии, когда оценивается линейная зависимость одной переменной от другой, формулы расчета упрощаются (можно обойтись без матричной алгебры). Система уравнений имеет вид:

Отсюда несложно найти оценки коэффициентов:

Несмотря на то что в общем случае модели с константой предпочтительней, в некоторых случаях из теоретических соображений известно, что константа должна быть равна нулю. Например, в физике зависимость между напряжением и силой тока имеет вид; замеряя напряжение и силу тока, необходимо оценить сопротивление. В таком случае речь идёт о модели. В этом случае вместо системы уравнений имеем единственное уравнение

Следовательно, формула оценки единственного коэффициента имеет вид

Статистические свойства МНК-оценок[править | править вики-текст]

В первую очередь, отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведённой формулы. Длянесмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа: условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если математическое ожидание случайных ошибок равно нулю, и факторы и случайные ошибки -- независимые случайные величины.

Первое условие можно считать выполненным всегда для моделей с константой, так как константа берёт на себя ненулевое математическое ожидание ошибок (поэтому модели с константой в общем случае предпочтительнее). наименьший квадрат регрессионный ковариационный

Второе условие -- условие экзогенности факторов -- принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае). В классическом случае делается более сильное предположение о детерминированности факторов, в отличие от случайной ошибки, что автоматически означает выполнение условия экзогенности. В общем случае для состоятельности оценок достаточно выполнения условия экзогенности вместе со сходимостью матрицы к некоторой невырожденной матрице при увеличении объёма выборки до бесконечности.

Для того, чтобы кроме состоятельности и несмещенности, оценки (обычного) МНК были ещё и эффективными (наилучшими в классе линейных несмещенных оценок) необходимо выполнение дополнительных свойств случайной ошибки:

Постоянная (одинаковая) дисперсия случайных ошибок во всех наблюдениях (отсутствие гетероскедастичности):

Отсутствие корреляции (автокорреляции) случайных ошибок в разных наблюдениях между собой

Данные предположения можно сформулировать для ковариационной матрицы вектора случайных ошибок

Линейная модель, удовлетворяющая таким условиям, называется классической. МНК-оценки для классической линейной регрессии являютсянесмещёнными, состоятельными и наиболее эффективными оценками в классе всех линейных несмещённых оценок (в англоязычной литературе иногда употребляют аббревиатуру BLUE (Best Linear Unbiased Estimator) -- наилучшая линейная несмещённая оценка; в отечественной литературе чаще приводится теорема Гаусса -- Маркова). Как нетрудно показать, ковариационная матрица вектора оценок коэффициентов будет равна:

Эффективность означает, что эта ковариационная матрица является «минимальной» (любая линейная комбинация коэффициентов, и в частности сами коэффициенты, имеют минимальную дисперсию), то есть в классе линейных несмещенных оценок оценки МНК-наилучшие. Диагональные элементы этой матрицы -- дисперсии оценок коэффициентов -- важные параметры качества полученных оценок. Однако рассчитать ковариационную матрицу невозможно, поскольку дисперсия случайных ошибок неизвестна. Можно доказать, что несмещённой и состоятельной (для классической линейной модели) оценкой дисперсии случайных ошибок является величина:

Подставив данное значение в формулу для ковариационной матрицы и получим оценку ковариационной матрицы. Полученные оценки также являютсянесмещёнными и состоятельными. Важно также то, что оценка дисперсии ошибок (а значит и дисперсий коэффициентов) и оценки параметров модели являются независимыми случайными величинами, что позволяет получить тестовые статистики для проверки гипотез о коэффициентах модели.

Необходимо отметить, что если классические предположения не выполнены, МНК-оценки параметров не являются наиболее эффективными оценками (оставаясь несмещёнными и состоятельными). Однако, ещё более ухудшается оценка ковариационной матрицы -- она становится смещённой инесостоятельной. Это означает, что статистические выводы о качестве построенной модели в таком случае могут быть крайне недостоверными. Одним из вариантов решения последней проблемы является применение специальных оценок ковариационной матрицы, которые являются состоятельными при нарушениях классических предположений (стандартные ошибки в форме Уайта и стандартные ошибки в форме Ньюи-Уеста). Другой подход заключается в применении так называемого обобщённого МНК.

Обобщенный МНК[править | править вики-текст]

Основная статья: Обобщенный метод наименьших квадратов

Метод наименьших квадратов допускает широкое обобщение. Вместо минимизации суммы квадратов остатков можно минимизировать некоторую положительно определенную квадратичную форму от вектора остатков, где -- некоторая симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем данного подхода, когда весовая матрица пропорциональна единичной матрице. Как известно из теории симметрических матриц (или операторов) для таких матриц существует разложение. Следовательно, указанный функционал можно представить следующим образом

то есть этот функционал можно представить как сумму квадратов некоторых преобразованных «остатков». Таким образом, можно выделить класс методов наименьших квадратов -- LS-методы (Least Squares).

Доказано (теорема Айткена), что для обобщенной линейной регрессионной модели (в которой на ковариационную матрицу случайных ошибок не налагается никаких ограничений) наиболее эффективными (в классе линейных несмещенных оценок) являются оценки т. н. обобщенного МНК (ОМНК, GLS -- Generalized Least Squares) -- LS-метода с весовой матрицей, равной обратной ковариационной матрице случайных ошибок: .

Можно показать, что формула ОМНК-оценок параметров линейной модели имеет вид

Ковариационная матрица этих оценок соответственно будет равна

Фактически сущность ОМНК заключается в определенном (линейном) преобразовании (P) исходных данных и применении обычного МНК к преобразованным данным. Цель этого преобразования -- для преобразованных данных случайные ошибки уже удовлетворяют классическим предположениям.

Взвешенный МНК[править | править вики-текст]

В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК (WLS -- Weighted Least Squares). В данном случае минимизируется взвешенная сумма квадратов остатков модели, то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении:

Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.

Находит широкое применение в эконометрике в виде четкой экономической интерпретации ее параметров.

Линейная регрессия сводится к нахождению уравнения вида

или

Уравнение вида позволяет по заданным значениям параметра х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х .

Построение линейной регрессии сводится к оценке ее параметров — а и в. Оценки параметров линейной регрессии могут быть найдены разными методами.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и в, при которых сумма квадратов отклонений фактических значений ре-зультативного признака (у) от расчетных (теоретических) ми-нимальна:

Чтобы найти минимум функции, надо вычислить част-ные производные по каждому из параметров а и b и приравнять их к нулю.

Обозначим через S, тогда:

Преобразуя формулу, получим следующую систему нормальных уравнений для оценки параметров а и в :

Решая систему нормальных уравнений (3.5) либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров а и в.

Параметр в называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции . Существуют разные модификации формулы линейного коэффициента корреляции. Некоторые из них приведены ниже:

Как известно, линейный коэффициент корреляции находится в границах: -1 1.

Для оценки качества подбора линейной функции рассчитывается квадрат

Линейного коэффициента корреляции называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Соответственно величина 1 - характеризует долю диспер-сии у, вызванную влиянием остальных не учтенных в модели факторов.

Вопросы для самоконтроля

1. Суть метода наименьших квадратов?

2. Сколькими переменными предоставляется парная регрессия?

3. Каким коэффициентом определяется теснота связи между переменами?

4. В каких пределах определяется коэффициент детерминации?

5. Оценка параметра b в корреляционно-регрессионном анализе?

1. Кристофер Доугерти. Введение в эконометрию. - М.: ИНФРА - М, 2001 - 402 с.

2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.


3. Р.У. Рахметова Краткий курс по эконометрике. Учебное пособие. Алматы. 2004. -78с.

4. И.И. Елисеева.Эконометрика. - М.: «Финансы и статистика»,2002

5. Ежемесячный информационно-аналитический журнал.

Нелинейные экономические модели. Нелинейные модели регрессии. Преобразование переменных.

Нелинейные экономические модели..

Преобразование переменных.

Коэффициент эластичности.

Если между экономическими явлениями существуют нели-нейные соотношения, то они выражаются с помощью соответ-ствующих нелинейных функций: например, равносторонней ги-перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы различных степеней - , ;

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы.

Если фактор не оказывает влияния на результат, то линия регрес-сии на графике параллельна оси ох и

Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный вли-янием фактора х , т. е. регрессией у по х, так и вызванный действием прочих причин (необъясненная вариация). Пригод-ность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариа-цию

Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у.

, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых откло-нений из п

Оценка значимости уравнения регрессии в целом дается с по-мощью F -критерия Фишера. При этом выдвигается нулевая ги-потеза, что коэффициент регрессии равен нулю, т. е. b = 0, и следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложе-ние общей суммы квадратов отклонений переменной у от средне го значения у на две части - «объясненную» и «необъясненную»:

Общая сумма квадратов отклонений;

Сумма квадратов отклонения объясненная регрессией;

Остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе-ней свободы, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло-нений из п возможных требуется для образования данной суммы квадратов.

Дисперсия на одну степень свободы D .

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива , то факторная и остаточная дисперсии не отличаются друг от друга. Для Н 0 необходимо опровержение,чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором раз-работаны таблицы критических значений F -отношений при разных уровняхсущественности нулевой гипотезы и различном числе степенейсвободы. Табличное значение F -критерия — это максимальная величина отношения дисперсий, которая может иметь место прислучайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F -отношения признается достоверным, если о больше табличного.

В этом случае нулевая гипотеза об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи: F факт > F табл Н 0 отклоняется.

Если же величина окажется меньше табличной F факт ‹, F табл , то вероятность нулевой гипотезы выше заданного уровня и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Н о не отклоняется.

Стандартная ошибка коэффициента регрессии

Для оценки существенности коэффициента регрессии его ве-личина сравнивается с его стандартной ошибкой, т. е. определяется фактическое значение t -критерия Стьюдентa: которое затем сравнивается с табличным значением при определенном уровне значимости и числе степеней свободы (n - 2).

Стандартная ошибка параметра а :

Значимость линейного коэффициента корреляции проверя-ется на основе величины ошибки коэффициента корреляции т r:

Общая дисперсия признака х :

Множественная линейная регрессия

Построение модели

Множественная регрессия представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида

Регрессия может дать хороший результат при модели-ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи-ческих переменных контролировать нельзя, т. е. не удается обес-печить равенство всех прочих условий для оценки влияния одно-го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост-роить уравнение множественной регрессии: y = a+b 1 x 1 +b 2 +…+b p x p + .

Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает в себя два круга вопросов: отбор фак-торов и выбор вида уравнения регрессии

(см. рисунок). Требуется найти уравнение прямой

Чем меньше числа по абсолютной величине, тем лучше подобрана прямая (2). В качестве характеристики точности подбора прямой (2) можно принять сумму квадратов

Условия минимума S будут

(6)
(7)

Уравнения (6) и (7) можно записать в таком виде:

(8)
(9)

Из уравнений (8) и (9) легко найти a и b по опытным значениям x i и y i . Прямая (2), определяемая уравнениями (8) и (9), называется прямой, полученной по методу наименьших квадратов (этим названием подчеркивается то, что сумма квадратов S имеет минимум). Уравнения (8) и (9), из которых определяется прямая (2), называются нормальными уравнениями.

Можно указать простой и общий способ составления нормальных уравнений. Используя опытные точки (1) и уравнение (2), можно записать систему уравнений для a и b

y 1 =ax 1 +b,
y 2 =ax 2 +b,
...
(10)
y n =ax n +b,

Умножим левую и правую части каждого из этих уравнений на коэффициент при первой неизвестной a (т.е. на x 1 , x 2 , ..., x n) и сложим полученные уравнения, в результате получится первое нормальное уравнение (8).

Умножим левую и правую части каждого из этих уравнений на коэффициент при второй неизвестной b, т.е. на 1, и сложим полученные уравнения, в результате получится второе нормальное уравнение (9).

Этот способ получения нормальных уравнений является общим: он пригоден, например, и для функции

есть величина постоянная и ее нужно определить по опытным данным (1).

Систему уравнений для k можно записать:

Найти прямую (2) по методу наименьших квадратов.

Решение. Находим:

x i =21, y i =46,3, x i 2 =91, x i y i =179,1.

Записываем уравнения (8) и (9)

Отсюда находим

Оценка точности метода наименьших квадратов

Дадим оценку точности метода для линейного случая, когда имеет место уравнение (2).

Пусть опытные значения x i являются точными, а опытные значения y i имеют случайные ошибки с одинаковой дисперсией для всех i.

Введем обозначение

(16)

Тогда решения уравнений (8) и (9) можно представить в виде

(17)
(18)
где
(19)
Из уравнения (17) находим
(20)
Аналогично из уравнения (18) получаем

(21)
так как
(22)
Из уравнений (21) и (22) находим
(23)

Уравнения (20) и (23) дают оценку точности коэффициентов, определенных по уравнениям (8) и (9).

Заметим, что коэффициенты a и b коррелированы. Путем простых преобразований находим их корреляционный момент.

Отсюда находим

0,072 при x=1 и 6,

0,041 при x=3,5.

Литература

Шор. Я. Б. Статистические методы анализа и контроля качества и надежности. М.:Госэнергоиздат, 1962, с. 552, С. 92-98.

Настоящая книга предназначается для широкого круга инженеров (научно-исследовательских институтов, конструкторских бюро, полигонов и заводов), занимающихся определением качества и надежности радиоэлектронной аппаратуры и других массовых изделий промышленности (машиностроения, приборостроения, артиллерийской и т.п.).

В книге дается приложение методов математической статистики к вопросам обработки и оценки результатов испытаний, при которых определяются качество и надежность испытываемых изделий. Для удобства читателей приводятся необходимые сведения из математической статистики, а также большое число вспомогательных математических таблиц, облегчающих проведение необходимых расчетов.

Изложение иллюстрируется большим числом примеров, взятых из области радиоэлектроники и артиллерийской техники.

Лучшие статьи по теме