Букеты, живые цветы, комнатные растения

Чему равна константа в законе бойля мариотта. Закон Бойля-Мариотта

Основные законы идеальных газов используются в технической термодинамике для решения целого ряда инженерно-технических задач в процессе разработки конструкторско-технологическойдокументации авиационной техники, авиадвигателей; их изготовления и эксплуатации.

Эти законы первоначально были получены экспериментальным путем. В последующем они были выведены из молекулярно-кинетической теории строения тел.

Закон Бойля – Мариотта устанавливает зависимость объема идеального газа от давления при постоянной температуре. Эту зависимость вывел английский химик и физик Р. Бойль в 1662 году задолго до появления ки­нетической теории газа. Независимо от Бойля в 1676 го­ду этот же закон открыл Э. Мариотт. Закон Роберта Бойля (1627 – 1691), английского химика и физика, установившего этот закон в 1662 году, и Эдма Мариотта (1620 – 1684),французского физика, установившего этот закон в 1676 году: произведение объёма данной массы идеального газа на его давление постоянно при постоянной температуре или.

Закон получил на­звание Бойля – Мариотта и утверждает, что при посто­янной температуре давление газа обратно пропорцио­нально его объему .

Пусть при постоянной температуре некоторой массы газа имеем:

V 1 – объем газа при давлении р 1 ;

V 2 – объем газа при давлении р 2 .

Тогда согласно закону мож­но записать

Подставив в это уравнение значение удельного объема и принимая массу данного газа т = 1кг, полу­чим

p 1 v 1 =p 2 v 2 илиpv = const .(5)

Плотность газа – величина, обратная его удельному объему:

тогда уравнение (4) примет вид

т. е. плотности газов прямо пропорциональны их абсо­лютным давлениям. Уравнение (5) можно рассматривать как новое выражение закона Бойля – Мариотта которое можно сформулировать так: произведение давления на удельный объем определенной массы одного и того же идеального газа для различных его состояний, но при одинаковой температуре, есть величина постоянная .

Этот закон может быть легко получен из основного уравнения кинетической теории газов. Заме­нив в уравнении (2) число молекул в единице объема отношением N /V (V – объем данной массы газа, N – число молекул в объеме) получим

Поскольку для данной массы газа величины N и β постоянны, то при постоянной температуре T =const для произвольного количества газа уравнение Бойля – Мариотта будет иметь вид

pV = const , (7)

а для 1 кг газа

pv = const .

Изобразим графически в системе координат р v из­менение состояния газа.

Например, давление данной массы газа объемом 1 м 3 равно 98 кПа, тогда, используя уравнение (7), определим давление газа объемом 2 м 3



Продолжая расчеты, получим следующие данные: V (м 3) равно 1; 2; 3; 4; 5; 6; соответственно р (кПа) равно 98; 49; 32,7; 24,5; 19,6; 16,3. По этим данным строим график (рис. 1).

Рис. 1. Зависимость давленияидеального газа от объема при

постоянной температуре

Полученная кривая – гипер­бола, полученная при пос­тоянной температуре, назы­вается изотермой, а процесс, протекающий при постоян­ной температуре, – изотер­мическим. Закон Бойля – Мариотта – приближенный и при очень больших дав­лениях и низких темпера­турах для теплотехнических расчетов неприемлем.

Закон Г е й – Л ю с с а к а определяет зависимость объ­ема идеального газа от температуры при постоян­ном давлении. (Закон Жозефа Луи Гей-Люссака (1778 – 1850), французского химика и физика, установившего впервые этот закон в 1802 году: объём данной массы идеального газа при постоянном давлении линейно возрастает с ростом температуры , то есть, где - удельный объём при; β – коэффициент объёмного расширения равный 1/273,16 на 1 о С.) Закон уста­новлен экспериментально в 1802 г. французским физи­ком и химиком Жозефом Луи Гей-Люссаком, именем которого назван. Исследуя на опыте тепловое расширение газов, Гей-Люссак от­крыл, что при неизменном давлении объемы всех газов увеличиваются при нагревании почти одинаково, т. е. при повышении температуры на 1°С объем некоторой массы газа увеличивается на 1/273 объема, который дан­ная масса газа занимала при 0°С.

Увеличение объема при нагревании на 1 °С на одну и ту же величину не случайно, а как бы является след­ствием закона Бойля – Мариотта. Вначале газ нагрева­ется при постоянном объеме на 1 °С, давление его увели­чивается на 1/273 начального. Затем газ расширяется при постоянной температуре, причем его давление уменьшается до начального, а объем во столько же раз увеличи­вается. Обозначив объем некоторой массы газа при 0°С через V 0 , а при температуре t °C через V t запишем закон следующим выражением:

Закон Гей-Люссака также можно изобразить графи­чески.

Рис. 2. Зависимость объема идеального газа от температу­ры при постоянном

давлении

Используя уравнение (8) и принимая температуру равной 0°С, 273 °С, 546 °С, вычислим объем газа, равный соответственно V 0 , 2V 0 , 3V 0 . Отложим по оси абсцисс в некотором условном масштабе (рис. 2) температуры га­за, а по оси ординат – соответствующие этим темпера­турам объемы газа. Соединяя на графике полученные точки, получим прямую, представляющую собой график зависимости объема идеального газа от температуры при постоянном давлении. Такая прямая называется изобарой , а процесс, протекающий при постоянном дав­лении – изобарным .

Обратимся еще раз к графику изменения объема га­за от температуры. Продолжим прямую до пересечения, с осью абсцисс. Точка пересечения будет соответствовать абсолютному нулю.

Предположим, что в уравнении (8) значение V t = 0, тогда имеем:

но так как V 0 ≠ 0, следовательно, откуда t = – 273°C. Но – 273°C=0К, что и требовалось дока­зать.

Представим уравнение Гей-Люссака в виде:

Помня, что 273+t =Т , а 273 К=0°С, получим:

Подставляя в уравнение (9) значение удельного объема и принимая т =1 кг, получим:

Отношение (10) выражает закон Гей-Люссака, кото­рый можно сформулировать так: при постоянном давле­нии удельные объемы одинаковых масс одного и того же идельного газа прямо пропорциональны его абсолютным температурам . Как видно из уравнения (10), закон Гей-Люссака утверждает, что частное от деления удельногообъема данной массы газа на его абсолютную темпера­туру есть величина постоянная при данном постоянном давлении .

Уравнение, выражающее закон Гей-Люссака, в об­щем виде имеет вид

и может быть получено из основного уравнения кине­тической теории газов. Уравнение (6) представим в виде

при p =const получаем уравнение (11). Закон Гей-Люссака широко применяется в технике. Так, на основе закона объемного расширения газов по­строен идеальный газовый термометр для измерения температур в пределах от 1 до 1400 К.

Закон Шарля устанавливает зависимость давле­ния данной массы газа от температуры при постоянном объеме.ЗаконЖана Шарля (1746 – 1823),французского ученого, установившего этот закон впервые в 1787 году, и уточненный Ж.Гей-Люссакомв 1802 году: давление идеального газа неизменной массы и объёма возрастает при нагревании линейно, то есть, где р о – давление приt = 0°C.

Шарль определил, что при нагревании в по­стоянном объеме давление всех газов увеличивается почти одинаково, т.е. при повышении температуры на 1 °С давление любого газа увеличивается точно на1/273 того давления, которая данная масса газа имела при 0°С. Обозначим давление некоторой массы газа в сосуде при 0°С через р 0 , а при температуре t ° через p t . При по­вышении температуры на 1°С давление увеличивается на, а при увеличении на t °Cдавление увеличива­ется на. Давление при температуре t °Cравно начальному плюс прирост давления или

Формула (12) позволяет вычислить давление при лю­бой температуре, если известно давление при 0°С. В инженерных расчетах очень часто используют уравнение (закон Шарля), которое легко получается из соотношения (12).

Поскольку, а 273 + t = Т или 273 К = 0°С = Т 0

При постоянном удельном объеме абсолютные давле­ния идеального газа прямо пропорциональны абсолют­ным температурам. Поменяв местами средние члены пропорции, получим

Уравнение (14) есть выражение закона Шарля в об­щем виде. Это уравнение легко вывести из формулы (6)

При V =const получаем общее уравнение закона Шарля (14).

Для построения графика зависимости данной массы газа от температуры при постоянном объеме воспользу­емся уравнением (13). Пусть, например, при температу­ре 273 К=0°С давление некоторой массы газа 98 кПа. По уравнению давление при температуре 373, 473, 573 °С соответственно будет 137 кПа (1,4 кгс/см 2), 172 кПа (1,76 кгс/см 2), 207 кПа (2,12 кгс/см 2). По этим данным строим график (рис. 3). Полученная прямая называется изохорой, а процесс, протекающий при постоянном объеме, – изохорным.

Рис. 3. Зависимость давления газа от темпера­туры при постоянном объеме

Закон Бойля-Мариотта - один из фундаментальных законов физики и химии , который связывает изменения давления и объема газообразных веществ. При помощи нашего калькулятора легко решить простые задачи по физике или химии.

Закон Бойля-Мариотта

Изотермический газовый закон был открыт ирландским ученым Робертом Бойлем , который проводил опыты над газами под давлением. При помощи U-образной трубки и обычной ртути Бойль установил простую закономерность, что в каждый момент времени произведение давления на объем газа неизменно. Если говорить сухим математическим языком, то закон Бойля-Мариотта гласит, что при неизменной температуре произведение давления и объема постоянно :

Для сохранения постоянного соотношения величины должны изменяться в разные стороны: во сколько раз уменьшится одна величина, во столько же раз увеличится другая. Следовательно, давление и объем газа обратно пропорциональны и закон можно переписать в следующем виде:

P1×V1 = P2×V2,

где P1 и V1 - начальные значения давления и объема соответственно, а P2 и V2 - конечные значения.

Применение закона Бойля-Мариотта

Наилучшей иллюстрацией проявления открытого Бойлем закона является погружение пластиковой бутылки под воду. Известно, что если газ помещен в баллон, то давление на вещество будет определяться только стенками баллона. Другое дело, когда это пластичная бутылка, которая легко изменяет свою форму. На поверхности воды (давление 1 атмосфера) закрытая бутылка будет сохранять свою форму, однако при погружении на глубину 10 м на стенки сосуда будет действовать давление в 2 атмосферы, бутылка начнет сжиматься, а объем воздуха уменьшится в 2 раза. Чем глубже будет погружаться пластиковая тара, тем меньший объем будет занимать воздух внутри нее.

Это простая демонстрация действия газового закона иллюстрирует важный вывод для многих дайверов. Если на поверхности воды баллон с воздухом имеет емкость 20 л, то при погружении на глубину 30 м, воздух внутри сожмется в три раза, следовательно, воздуха для дыхания на такой глубине будет в три раза меньше, чем на поверхности.

Помимо дайверской темы, закон Бойля-Мариотта в действии можно наблюдать в процессе сжатия воздуха в компрессоре или в расширении газов при использовании насоса.

Наша программа представляет собой онлайн-инструмент, при помощи которого легко рассчитать пропорцию для любого газового изотермического процесса. Для использования инструмента вам требуется знать три любые величины, а калькулятор автоматически рассчитает искомую.

Примеры работы калькулятора

Школьная задача

Рассмотрим простую школьную задачку, в которой требуется найти первоначальный объем газа, если давление изменилось с 1 до 3 атмосфер, а объем уменьшился до 10 л. Итак, у нас есть все данные для расчета, которые требуется ввести в соответствующие ячейки калькулятора. В итоге получаем, что первоначальный объем газа составлял 30 литров.

Еще о дайвинге

Вспомним пластиковую бутыль. Представим, что мы погрузили бутыль, наполненную 19 л воздуха на глубину 40 м. Как изменится объем воздуха на поверхности? Это более сложная задачка, но только потому, что нам требуется перевести глубину в давление. Мы знаем, что на поверхности воды атмосферное давление составляет 1 бар, а при погружении в воду давление увеличивается на 1 бар каждые 10 м. Это означает, что на глубине 40 м бутыль будет под давлением приблизительно 5 атмосфер. У нас есть все данные для расчета, и в результате мы увидим, что объем воздуха на поверхности увеличится до 95 литров.

Заключение

Закон Бойля-Мариотта встречается в нашей жизни довольно часто, поэтому вам несомненно пригодится калькулятор, который автоматизирует расчеты по этой простой пропорции.

По своим механическим свойствам газы имеют много общего с жидкостями. Так же как и жидкости, они не обладают упругостью по отношению к изменениям формы. Отдельные части газа легко могут перемещаться друг относительно друга. Так же как и жидкости, они обладают упругостью относительно деформации всестороннего сжатия. При увеличении внешних давлений объем газа уменьшается. При снятии внешних давлений объем газа возвращается к первоначальному значению.

В существовании упругих свойств газа легко убедиться на опыте. Возьмите детский воздушный шар. Надуйте его не очень сильно и завяжите. После этого начните сдавливать его руками (рис. 3.20). При появлении внешних давлений шар сожмется, его объем уменьшится. Если прекратить сдавливание, шар сразу расправится, как будто у него внутри есть пружины.

Возьмите воздушный насос для автомашины или велосипеда, закройте его выходное отверстие и надавите на ручку поршня. Воздух, заключенный внутри насоса, начнет сжиматься, и вы сразу почувствуете быстрое нарастание давления. Еслн перестать давить на поршень, он вернется на место, и воздух займет первоначальный объем.

Упругость газа по отношению к всестороннему сжатию используется в шинах автомашин для амортизации, в воздушных тормозах и других устройствах. Первым упругие свойства газа, его способность изменять свой объем при изменении давления заметил Блез Паскаль.

Как мы уже отмечали, газ отличается от жидкости тем, что не может сам по себе сохранять объем неизменным и не имеет свободной поверхности. Он обязательно должен находиться в замкнутом сосуде и всегда будет полностью занимать весь объем этого сосуда.

Другим важным отличием газа от жидкости является его большая сжимаемость (податливость). Уже при очень малых изменениях давления возникают хорошо заметные большие изменения объема газа. Кроме того, связь между давлениями и изменениями объема для газа носит более сложный характер, чем для жидкости. Изменения объема уже не будут прямо пропорциональны изменениям давления.

Впервые количественную связь между давлением и объемом газа установил английский ученый Роберт Бойль (1627-1691). В своих опытах Бойль наблюдал за изменениями объема воздуха, заключенного в запаянном конце трубки (рис. 3.21). Давление на этот воздух он изменял, подливая ртуть в длинное колено трубки. Давление определялось по высоте столба ртути

Опыт Бойля в приближенном, грубом виде вы можете повторить с воздушным насосом. Возьмите хороший насос (важно, чтобы поршень не пропускал воздух), закройте выходное отверстие и нагружайте поочередно ручку поршня одним, двумя, тремя одинаковыми грузами. Одновременно отмечайте положения ручки при разных нагрузках относительно вертикальной линейки.

Даже такой грубый опыт позволит вам убедиться в том, что объем данной массы газа обратно пропорционален давлению, которому подвергается этот газ. Независимо от Бойля такие же опыты ставил французский ученый Эдмон Мариотт (1620-1684), который пришел к таким же результатам, как и Бойль.

Одновременно Мариотт обнаружил, что при проведении опыта нужно соблюдать одну очень важную предосторожность: температура газа во время опыта должна оставаться постоянной, иначе результаты опыта будут другими. Поэтому закон Бойля - Мариотта читается так; при постоянной температуре объем данной массы газа обратно пропорционален давлению.

Если обозначить через начальные объем и давление газа, через конечные объем и давление той же массы газа, то

закон Бойля - Мариотта можно записать в виде следующей формулы:

Представим закон Бойля - Мариотта в наглядной графической форме. Для определенности допустим, что некоторая масса газа занимала объем при давлении Изобразим графически, как будет меняться объем этого газа с увеличением давления при постоянной температуре. Для этого рассчитаем объемы газа по закону Бойля - Мариотта для давлений 1, 2, 3, 4 и т. д. атмосфер и составим таблицу:

По этой таблице легко построить график зависимости давления газа от его объема (рис. 3.22).

Как видно из графика, зависимость давления от объема газа действительно носит сложный характер. Сначала увеличение давления от одной до двух единиц приводит к уменьшению объема в два раза. В дальнейшем при таких же приращениях давления возникают все более малые изменения начального объема. Чем больше сжимается газ, тем более упругим он становится. Поэтому для газа нельзя указать какого-нибудь постоянного модуля сжатия (характеризующего его упругие свойства), как это сделано для твердых тел. У газа модуль сжатия зависит от давления, под которым находится модуль сжатия растет вместе с давлением.

Заметим, что закон Бойля - Мариотта соблюдается только для не очень больших давлений и не очень низких температур. При высоких давлениях и низких температурах зависимость между объемом и давлением газа становится еще более сложной. Для воздуха, например, при 0°С закон Бойля - Мариотта дает правильные значения объема при давлении не выше 100 ат.

В начале параграфа уже говорилось, что упругие свойства газа, его большая сжимаемость широко используются человеком в практической деятельности. Приведем еще несколько примеров. Возможность сильно сжимать газ с помощью высоких давлений позволяет хранить большие массы газа в малых объемах. Баллоны со сжатым воздухом, водородом, кислородом широко используются в промышленности, например при газовой сварке (рис. 3.23).

Хорошие упругие свойства газа послужили основой для создания речных судов на воздушной подушке (рис. 3.24). Эти суда нового типа идоеют скорости, намного превосходящие те, которые удавалось получить раньше. Благодаря использованию упругих свойств воздуха удалось избавиться от больших сил трения. Правда, в этом случае расчет давления значительно усложняется, потому что приходится рассчитывать давления в быстрых потоках воздуха.

В основе многих биологических процессов также лежит использование упругих свойств воздуха. Задумывались ли вы, например, о том, как дышите? Что происходит при вдохе?

По сигналу нервной системы о том, что организму не хватает кислорода, человек при вдохе с помощью мышц грудной клетки поднимает ребра, с помощью других мышц опускает диафрагму. При этом увеличивается объем, который могут занять легкие (и находящиеся, в них остатки воздуха). Но такое увеличение объема приводит к большому уменьшению давления воздуха в легких. Возникает разность давлений между наружным воздухом и воздухом в легких. В результате наружный воздух начинает сам входить в легкие за счет своих упругих свойств.

Мы только предоставляем ему возможность войти, изменяя объем легких.

Не только в этом состоит использование упругости воздуха при дыхании. Легочная ткань очень нежная, и она не выдержала бы многократных растягиваний и довольно грубых нажимов грудных мышц. Поэтому она и не прикреплена к ним (рис. 3.25). Кроме этого, расширение легкого путем растягивания его поверхности (с помощью грудных мышц) вызвало бы неравномерное, неодинаковое расширение легкого в разных частях. Поэтому легкое окружено особой пленкой - плеврой. Плевра одной своей частью прикреплена к легкому, а другой - к мышечной ткани грудной клетки. Плевра образует своеобразный мешок, стенки которого не пропускают воздуха.

Внутри самой плевральной полости содержится очень небольшое количество газа. Давление этого газа становится равным давлению воздуха в легких только тогда, когда стенки плевры находятся очень близко друг от друга. При вдохе объем полости резко увеличивается. Давление в ней резко падает. Легкое за счет остатков содержащегося в нем воздуха начинает само расширяться равномерно во всех частях подобно резиновому шарику под колоколом воздушного насоса.

Таким образом, природа мудро использовала упругие свойства воздуха для создания идеального амортизатора для ткани легкого и самых выгодных условий для его расширения и сжатия.

При решении задач на применение законов Ньютона мы будем использовать закон Бойля - Мариотта как дополнительное уравнение, выражающее особые упругие свойства газов.

Утверждение закона Бойля - Мариотта состоит в следующем :

В математической форме это утверждение записывается в виде формулы

p V =C,

где p - давление газа; V - объём газа, а C - постоянная в оговоренных условиях величина. В общем случае значение C определяется химической природой, массой и температурой газа.

Очевидно, что если индексом 1 обозначить величины, относящиеся к начальному состоянию газа, а индексом 2 - к конечному, то приведённую формулу можно записать в виде

p_1 V_1 = p_2 V_2.

Из сказанного и приведённых формул следует вид зависимости давления газа от его объёма в изотермическом процессе:

p=\frac {C}{V}.

Эта зависимость представляет собой другое, эквивалентное первому, выражение содержания закона Бойля - Мариотта. Она означает, что

Давление некоторой массы газа, находящегося при постоянной температуре, обратно пропорционально его объёму.

Тогда связь начального и конечного состояний газа, участвовавшего в изотермическом процессе, можно выразить в виде:

\frac {p_1}{p_2} = \frac {V_2}{V_1}.

Следует отметить, что применимость этой и приведённой выше формулы, связывающей начальные и конечные давления и объёмы газа друг с другом, не ограничивается случаем изотермических процессов. Формулы остаются справедливыми и в тех случаях, когда в ходе процесса температура изменяется, но в результате процесса конечная температура оказывается равной начальной.

Важно уточнить, что данный закон справедлив только в тех случаях, когда рассматриваемый газ можно считать идеальным . В частности, с высокой точностью закон Бойля - Мариотта выполняется применительно к разреженным газам. Если же газ сильно сжат, то наблюдаются существенные отступления от этого закона.

Следствия

Закон Бойля - Мариотта утверждает, что давление газа в изотермическом процессе обратно пропорционально занимаемому газом объёму. Если учесть, что плотность газа также обратно пропорциональна занимаемому им объёму, то мы придём к заключению:

При изотермическом процессе давление газа изменяется прямо пропорционально его плотности.

\beta_T =\frac{1}{p}.

Таким образом, приходим к выводу:

Изотермический коэффициент сжимаемости идеального газа равен обратной величине его давления.

См. также

Напишите отзыв о статье "Закон Бойля - Мариотта"

Примечания

  1. Петрушевский Ф. Ф. // Энциклопедический словарь Брокгауза и Ефрона
  2. // Физическая энциклопедия / Гл. ред. А. М. Прохоров . - М .: Советская энциклопедия , 1988. - Т. 1. - С. 221-222. - 704 с. - 100 000 экз.
  3. Сивухин Д. В. Общий курс физики. - М .: Физматлит , 2005. - Т. II. Термодинамика и молекулярная физика. - С. 21-22. - 544 с. - ISBN 5-9221-0601-5 .
  4. Элементарный учебник физики / Под ред. Г. С. Ландсберга . - М .: Наука , 1985. - Т. I. Механика. Теплота. Молекулярная физика. - С. 430. - 608 с.
  5. Кикоин А. К. , Кикоин И. К. Молекулярная физика. - М .: Наука, 1976. - С. 35-36.
  6. При постоянной массе.
  7. Лившиц Л. Д. // Физическая энциклопедия / Гл. ред. А. М. Прохоров. - М .: Большая Российская энциклопедия, 1994. - Т. 4. - С. 492-493. - 704 с. - 40 000 экз. - ISBN 5-85270-087-8 .

Литература

Отрывок, характеризующий Закон Бойля - Мариотта

– Она самая, – послышался в ответ грубый женский голос, и вслед за тем вошла в комнату Марья Дмитриевна.
Все барышни и даже дамы, исключая самых старых, встали. Марья Дмитриевна остановилась в дверях и, с высоты своего тучного тела, высоко держа свою с седыми буклями пятидесятилетнюю голову, оглядела гостей и, как бы засучиваясь, оправила неторопливо широкие рукава своего платья. Марья Дмитриевна всегда говорила по русски.
– Имениннице дорогой с детками, – сказала она своим громким, густым, подавляющим все другие звуки голосом. – Ты что, старый греховодник, – обратилась она к графу, целовавшему ее руку, – чай, скучаешь в Москве? Собак гонять негде? Да что, батюшка, делать, вот как эти пташки подрастут… – Она указывала на девиц. – Хочешь – не хочешь, надо женихов искать.
– Ну, что, казак мой? (Марья Дмитриевна казаком называла Наташу) – говорила она, лаская рукой Наташу, подходившую к ее руке без страха и весело. – Знаю, что зелье девка, а люблю.
Она достала из огромного ридикюля яхонтовые сережки грушками и, отдав их именинно сиявшей и разрумянившейся Наташе, тотчас же отвернулась от нее и обратилась к Пьеру.
– Э, э! любезный! поди ка сюда, – сказала она притворно тихим и тонким голосом. – Поди ка, любезный…
И она грозно засучила рукава еще выше.
Пьер подошел, наивно глядя на нее через очки.
– Подойди, подойди, любезный! Я и отцу то твоему правду одна говорила, когда он в случае был, а тебе то и Бог велит.
Она помолчала. Все молчали, ожидая того, что будет, и чувствуя, что было только предисловие.
– Хорош, нечего сказать! хорош мальчик!… Отец на одре лежит, а он забавляется, квартального на медведя верхом сажает. Стыдно, батюшка, стыдно! Лучше бы на войну шел.
Она отвернулась и подала руку графу, который едва удерживался от смеха.
– Ну, что ж, к столу, я чай, пора? – сказала Марья Дмитриевна.
Впереди пошел граф с Марьей Дмитриевной; потом графиня, которую повел гусарский полковник, нужный человек, с которым Николай должен был догонять полк. Анна Михайловна – с Шиншиным. Берг подал руку Вере. Улыбающаяся Жюли Карагина пошла с Николаем к столу. За ними шли еще другие пары, протянувшиеся по всей зале, и сзади всех по одиночке дети, гувернеры и гувернантки. Официанты зашевелились, стулья загремели, на хорах заиграла музыка, и гости разместились. Звуки домашней музыки графа заменились звуками ножей и вилок, говора гостей, тихих шагов официантов.
На одном конце стола во главе сидела графиня. Справа Марья Дмитриевна, слева Анна Михайловна и другие гостьи. На другом конце сидел граф, слева гусарский полковник, справа Шиншин и другие гости мужского пола. С одной стороны длинного стола молодежь постарше: Вера рядом с Бергом, Пьер рядом с Борисом; с другой стороны – дети, гувернеры и гувернантки. Граф из за хрусталя, бутылок и ваз с фруктами поглядывал на жену и ее высокий чепец с голубыми лентами и усердно подливал вина своим соседям, не забывая и себя. Графиня так же, из за ананасов, не забывая обязанности хозяйки, кидала значительные взгляды на мужа, которого лысина и лицо, казалось ей, своею краснотой резче отличались от седых волос. На дамском конце шло равномерное лепетанье; на мужском всё громче и громче слышались голоса, особенно гусарского полковника, который так много ел и пил, всё более и более краснея, что граф уже ставил его в пример другим гостям. Берг с нежной улыбкой говорил с Верой о том, что любовь есть чувство не земное, а небесное. Борис называл новому своему приятелю Пьеру бывших за столом гостей и переглядывался с Наташей, сидевшей против него. Пьер мало говорил, оглядывал новые лица и много ел. Начиная от двух супов, из которых он выбрал a la tortue, [черепаховый,] и кулебяки и до рябчиков он не пропускал ни одного блюда и ни одного вина, которое дворецкий в завернутой салфеткою бутылке таинственно высовывал из за плеча соседа, приговаривая или «дрей мадера», или «венгерское», или «рейнвейн». Он подставлял первую попавшуюся из четырех хрустальных, с вензелем графа, рюмок, стоявших перед каждым прибором, и пил с удовольствием, всё с более и более приятным видом поглядывая на гостей. Наташа, сидевшая против него, глядела на Бориса, как глядят девочки тринадцати лет на мальчика, с которым они в первый раз только что поцеловались и в которого они влюблены. Этот самый взгляд ее иногда обращался на Пьера, и ему под взглядом этой смешной, оживленной девочки хотелось смеяться самому, не зная чему.
Николай сидел далеко от Сони, подле Жюли Карагиной, и опять с той же невольной улыбкой что то говорил с ней. Соня улыбалась парадно, но, видимо, мучилась ревностью: то бледнела, то краснела и всеми силами прислушивалась к тому, что говорили между собою Николай и Жюли. Гувернантка беспокойно оглядывалась, как бы приготавливаясь к отпору, ежели бы кто вздумал обидеть детей. Гувернер немец старался запомнить вое роды кушаний, десертов и вин с тем, чтобы описать всё подробно в письме к домашним в Германию, и весьма обижался тем, что дворецкий, с завернутою в салфетку бутылкой, обносил его. Немец хмурился, старался показать вид, что он и не желал получить этого вина, но обижался потому, что никто не хотел понять, что вино нужно было ему не для того, чтобы утолить жажду, не из жадности, а из добросовестной любознательности.

На мужском конце стола разговор всё более и более оживлялся. Полковник рассказал, что манифест об объявлении войны уже вышел в Петербурге и что экземпляр, который он сам видел, доставлен ныне курьером главнокомандующему.

Лучшие статьи по теме