Букеты, живые цветы, комнатные растения
  • Главная
  • Растения
  • Что такое множество пример. Что такое множество? Операции над кванторами

Что такое множество пример. Что такое множество? Операции над кванторами

Множество — это набор каких-либо объектов. Объекты, из которых состоит множество, называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел .

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Содержание урока

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы - строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео , то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends ), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }

Пример 2 . Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности ∈ . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D ). Записывается это так:

2 ∈ D

Читается как « 2 принадлежит множеству делителей числа 6«

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности . К примеру, делитель 5 не принадлежит множеству D . Записывается это так:

5 ∉ D

Читается как « 5 не принадлежит множеству делителей числа 6«

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том :

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }

Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число» , чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N .

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»

Множество целых чисел

Множество целых чисел включает в себя все положительные и , а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z .

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа .

Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби , а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби , а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

При выделении целой части в дроби , получается смешанное число . Видим, что смешанное число тоже может быть представлено в виде дроби . Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q .

Например укажем, что дробь принадлежит множеству рациональных чисел. Для этого записываем саму дробь , затем с помощью знака принадлежности ∈ указываем, что дробь принадлежит множеству рациональных чисел:

Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число принадлежит множеству рациональных чисел:

Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Достаточно часто в математической науке возникает ряд трудностей и вопросов, причем многие ответы не всегда проясняются. Не исключением стала такая тема, как мощность множеств. По сути, это не что иное как численное выражение количества объектов. В общем смысле множество является аксиомой, у него нет определения. В основе лежат любые объекты, а точнее их набор, который может носить пустой, конечный или бесконечный характер. Кроме этого, он содержит числа целые или натуральные, матрицы, последовательности, отрезки и прямые.

О существующих переменных

Нулевой или пустой набор, не имеющий собственного значения, считается элементом мощности, так как это подмножество. Сбор всех подмножеств непустого множества S является множеством множеств. Таким образом, набор мощности заданного множества считается многим, мыслимым, но единым. Это множество называется множеством степеней S и обозначается P (S). Если S содержит N элементов, то P (S) содержит 2 ^ n подмножеств, так как подмножество P (S) является либо ∅, либо подмножеством, содержащим r элементов из S, r = 1, 2, 3, ... Составленное из всего бесконечного множества M называется степенным количеством и символически обозначается P (M).

Эта область знаний была разработана Джорджем Кантором (1845-1918 годы жизни). Сегодня она используется почти во всех отраслях математики и служит ее фундаментальной частью. В теории множеств элементы представлены в форме списка и заданы типами (пустой набор, одноэлементный, конечные и бесконечные множества, равные и эквивалентные, универсальные), объединение, пересечение, разность и дополнение чисел. В повседневной жизни часто говорится о коллекции таких объектов, как куча ключей, стая птиц, пачка карточек и т. д. В математике 5 класса и не только, встречаются натуральные, целые, простые и составные числа.

Можно рассмотреть следующие множества:

  • натуральные числа;
  • буквы алфавита;
  • первичные коэффициенты;
  • треугольники с разными значениями сторон.

Видно, что эти указанные примеры представляют собой четко определенные множества объектов. Рассмотрим еще несколько примеров:

  • пять самых известных ученых мира;
  • семь красивых девушек в обществе;
  • три лучших хирурга.

Эти примеры мощности множества не являются четко определенными коллекциями объектов, потому, что критерий "наиболее известных", "самых красивых", "лучших" варьируется от человека к человеку.

Наборы

Это значение представляет собой четко определенное количество различных объектов. Предположив, что:

  • набор слов является синонимом, агрегатом, классом и содержит элементы;
  • объекты, члены являются равными по значению терминами;
  • наборы обычно обозначаются прописными буквами ;
  • элементы набора представлены маленькими буквами a, b, c.

Если «a» - элемент множества A, то говорится, что «a» принадлежит A. Обозначим фразу «принадлежит» греческим символом «∈» (epsilon). Таким образом, выходит, что a ∈ A. Если "b" - элемент, который не принадлежит A, это представляется как b ∉ A. Некоторые важные наборы, используемые в математике 5 класса, представляют, используя три следующих метода:

  • заявки;
  • реестров или табличные;
  • правило создания построения.

При детальном рассмотрении форма заявления основана на следующем. В этом случае задано четкое описание элементов множества. Все они заключены в фигурные скобки. Например:

  • множество нечетных чисел, меньших 7 - записывается как {меньше 7};
  • набор чисел больше 30 и меньше 55;
  • количество учеников класса, вес которых больше, чем учителя.

В форме реестра (табличной) элементы набора перечислены в паре скобок {} и разделены запятыми. Например:

  1. Пусть N обозначает множество первых пяти натуральных чисел. Следовательно, N = → форма реестра
  2. Набор всех гласных английского алфавита. Следовательно, V = {a, e, i, o, u, y} → форма реестра
  3. Множество всех нечетных чисел меньше 9. Следовательно, X = {1, 3, 5, 7} → форма реестра
  4. Набор всех букв в слове «Математика». Следовательно, Z = {M, A, T, H, E, I, C, S} → Форма реестра
  5. W - это набор последних четырех месяцев года. Следовательно, W = {сентябрь, октябрь, ноябрь, декабрь} → реестр.

Стоит отметить, что порядок, в котором перечислены элементы, не имеет значения, но они не должны повторяться. Установленная форма построения, в заданном случае правило, формула или оператор записываются в пару скобок, чтобы набор был корректно определен. В форме set builder все элементы должны обладать одним свойством, чтобы стать членом рассматриваемого значения.

В этой форме представления набора элемент множества описывается с помощью символа «x» или любой другой переменной, за которой следует двоеточие («:» или «|» используется для обозначения). Например, пусть P - множество счетных чисел, большее 12. P в форме set-builder написано, как - {счетное число и больше 12}. Это будет читаться определенным образом. То есть, «P - множество элементов x, такое, что x является счетным числом и больше 12».

Решенный пример с использованием трех методов представления набора: количество целых чисел, лежащих между -2 и 3. Ниже приведены примеры различных типов наборов:

  1. Пустой или нулевой набор, который не содержит какого-либо элемента и обозначается символом ∅ и считывается как phi. В форме списка ∅ имеет написание {}. Пустым является конечное множество, так как число элементов 0. Например, набор целых значений меньше 0.
  2. Очевидно, что их не должно быть <0. Следовательно, это пустое множество.
  3. Набор, содержащий только одну переменную, называется одноэлементным множеством. Не является ни простым, ни составным.

Конечное множество

Множество, содержащее определенное число элементов, называется конечным либо бесконечным множеством. Пустое относится к первому. Например, набор всех цветов в радуге.

Бесконечное количество - это набор. Элементы в нем не могут быть перечислены. То есть, содержащий подобные переменные, называется бесконечным множеством. Примеры:

  • мощность множества всех точек в плоскости;
  • набор всех простых чисел.

Но стоит понимать, что все мощности объединения множества не могут быть выражены в форме списка. К примеру, вещественные числа, так как их элементы не соответствуют какой-либо конкретной схеме.

Кардинальный номер набора - это число различных элементов в заданном количестве A. Оно обозначается n (A).

Например:

  1. A {x: x ∈ N, x <5}. A = {1, 2, 3, 4}. Следовательно, n (A) = 4.
  2. B = набор букв в слове ALGEBRA.

Эквивалентные наборы для сравнения множеств

Две мощности множества A и B являются таковыми, если их кардинальное число одинаково. Символом для обозначения эквивалентного набора является «↔». Например: A ↔ B.

Равные наборы: две мощности множества A и B, если они содержат одни и те же элементы. Каждый коэффициент из A является переменной из B, и каждый из B является указанным значением A. Следовательно, A = B. Различные типы объединения множеств в мощности и их определения объясняются с помощью указанных примеров.

Сущность конечности и бесконечности

Каковы различия между мощностью конечного множества и бесконечного?

Для первого значения характерно следующее название, если оно либо пустое, либо имеет конечное число элементов. В конечном множестве переменная может быть указана, если она имеет ограниченный счет. Например, с помощью натурального числа 1, 2, 3. И процесс листинга заканчивается на некотором N. Число различных элементов, отсчитываемых в конечном множестве S, обозначается через n (S). А также называется порядком или кардинальным. Символически обозначается по стандартному принципу. Таким образом, если множество S является русским алфавитом, то оно содержит в себе 33 элемента. Также важно запомнить, что элемент не встречается более одного раза в наборе.

Бесконечное количество в множестве

Множество называется бесконечным, если элементы не могут быть перечислены. Если оно имеет неограниченное (то есть несчетное) натуральное число 1, 2, 3, 4 для любого n. Множество, которое не является конечным, называется бесконечным. Теперь можно обсудить примеры рассматриваемых числовых значений. Варианты конечного значения:

  1. Пусть Q = {натуральные числа меньше 25}. Тогда Q - конечное множество и n (P) = 24.
  2. Пусть R = {целые числа между 5 и 45}. Тогда R - конечное множество и n (R) = 38.
  3. Пусть S = {числа, модуль которых равен 9}. Тогда S = {-9, 9} является конечным множеством и n (S) = 2.
  4. Набор всех людей.
  5. Количество всех птиц.

Примеры бесконечного множества:

  • количество существующих точек на плоскости;
  • число всех пунктов в сегменте линии;
  • множество положительных целых чисел, кратных 3, является бесконечным;
  • все целые и натуральные числа.

Таким образом, из приведенных выше рассуждений понятно, как различать конечные и бесконечные множества.

Мощность множества континуум

Если провести сравнение множества и других существующих значений, то к множеству присоединено дополнение. Если ξ - универсальное, а A - подмножество ξ, то дополнение к A является количеством всех элементов ξ, которые не являются элементами A. Символически обозначается дополнение A относительно ξ как A". К примеру, 2, 4, 5, 6 являются единственными элементами ξ, которые не принадлежат A. Следовательно, A"= {2, 4, 5, 6}

Множество с мощностью континуум имеет следующие особенности:

  • дополнением универсального количества является пустое рассматриваемое значение;
  • эта переменная нулевого множества является универсальным;
  • количество и его дополнение являются непересекающимися.

Например:

  1. Пусть количество натуральных чисел является универсальным множеством и А - четное. То, тогда A "{x: x - множество нечетное с такими же цифрами}.
  2. Пусть ξ = множество букв в алфавите. A = набор согласных. Тогда A "= количество гласных.
  3. Дополнением к универсальному множеству является пустое количество. Можно обозначить через ξ. Тогда ξ "= Множество тех элементов, которые не входят в ξ. Пишется и обозначается пустое множество φ. Поэтому ξ = φ. Таким образом, дополнение к универсальному множеству является пустым.

В математике «континуум» иногда используется для обозначения реальной линии. И в более общем плане, для описания подобных объектов:

  • континуум (в теории множеств) - вещественная линия или соответствующее кардинальное число;
  • линейный - любое упорядоченное множество, которое разделяет определенные свойства реальной прямой;
  • континуум (в топологии) - непустое компактное связное метрическое пространство (иногда хаусдорфово);
  • гипотеза о том, что никакие бесконечные множества больше целых чисел, но меньшие, чем действительные числа;
  • мощность континуума - кардинальное число, представляющее размер множества действительных чисел.

По существу дела, континуум (измерение), теории или модели, которые объясняют постепенные переходы из одного состояния в другое без каких-либо резких изменений.

Проблемы объединения и пересечения

Известно, что пересечение двух или более множеств - это количество, содержащее все элементы, которые являются общими в этих значениях. Задачи Word на множествах решаются, чтобы получить основные идеи о том, как использовать свойства объединения и пересечения множеств. Решенные основные проблемы слов на множествах выглядят так:

  1. Пусть A и B - два конечных множества. Они представляют собой такие, что n (A) = 20, n (B) = 28 и n (A ∪ B) = 36, находится n (A ∩ B).

Связь в наборах с использованием диаграммы Венна:

  1. Объединение двух множеств может быть представлено заштрихованной областью, представляющей A ∪ B. A ∪ B, когда A и B - непересекающиеся множества.
  2. Пересечение двух множеств может быть представлено диаграммой Венна. С затененной областью, представляющей A ∩ B.
  3. Разность двух наборов может быть представлена диаграммами Венна. С заштрихованной областью, представляющей A - B.
  4. Связь между тремя наборами, использующими диаграмму Венна. Если ξ представляет универсальное количество, то A, B, C - три подмножества. Здесь все три набора являются перекрывающимися.

Обобщение информации о множестве

Мощность множества определяется как общее количество отдельных элементов в наборе. А последнее указанное значение описывается как количество всех подмножеств. При изучении подобных вопросов требуются методы, способы и варианты решения. Итак, у мощности множества примерами могут служить следующие:

Пусть A = {0,1,2,3}| | = 4, где | A | представляет мощность множества A.

Теперь можно найти свой набор мощности. Это тоже довольно просто. Как уже сказано, набор мощности установлен из всех подмножеств заданного количества. Поэтому нужно в основном определить все переменные, элементы и другие значения A, которые {}, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, { 2,3}, {0,1,2}, {0,1,3}, {1,2,3}, {0,2,3}, {0,1,2,3}.

Теперь мощность выясняет P = {{}, {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}, {0,1,2}, {0,1,3}, {1,2,3}, {0,2,3}, {0,1,2,3}}, который имеет 16 элементов. Таким образом, мощность множества A = 16. Очевидно, что это утомительный и громоздкий метод решения этой проблемы. Однако есть простая формула, по которой, непосредственно, можно знать количество элементов в множестве мощности заданного количества. | P | = 2 ^ N, где N - число элементов в некотором A. Эта формула может быть получена применением простой комбинаторики. Таким образом, вопрос равен 2 ^ 11, поскольку число элементов в множестве A равно 11.

Итак, множеством является любое численно выраженное количество, которое может быть всевозможным объектом. К примеру, машины, люди, числа. В математическом значении это понятие шире и более обобщенное. Если на начальных этапах разбираются числа и варианты их решения, то в средних и высших стадиях условия и задачи усложнены. По сути, мощность объединения множества определена принадлежностью объекта к какой-либо группе. То есть один элемент принадлежит к классу, но имеет одну или несколько переменных.

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

Множества, операции над множествами

Определение 1: Под множеством понимается совокупность некоторых объектов (элементов) множества, обладающих общим для них свойством. Обозначаются множества прописными латинскими буквами, элементы – строчными.

https://pandia.ru/text/80/218/images/image002_346.gif" align="left" width="172" height="101 src=">

Определение 3: Пересечением множеств A и B называется множество, состоящее из тех и только тех элементов, каждый из которых принадлежит как множеству A , так и множеству B .

https://pandia.ru/text/80/218/images/image004_243.gif" width="477" height="27">

Множество натуральных чисел замкнуто относительно двух операций: сложения и умножения.

Основные законы сложения и умножения натуральных чисел

Переместительный (коммутативный) закон сложения a + b = b + a Переместительный (коммутативный) закон умножения ab = ba Сочетательный закон сложения (ассоциативный) (a + b )+ c = a +(b + c ) Сочетательный закон умножения (ассоциативный) (ab ) c = a (bc ) Распределительный (дистрибутивный) закон умножения относительно сложения (a + b ) c = ac + bc Множество целых чисел Z. Делимость целых чисел. Признаки делимости

Определение 10: Натуральные числа, им противоположные и {0} называются целыми числами

Z = N +(- N )+{0}

Все законы сложения и умножения натуральных чисел справедливы для целых чисел.

Делимость целых чисел

Целое число a делится на целое число b (нацело), если существует такое https://pandia.ru/text/80/218/images/image009_152.gif" width="137" height="23">

Свойства делимости целых чисел

Делимость рефлексивна Отношение делимости транзитивно Любое целое число всегда делится нацело на 1 и равно этому числу.

Признаки делимости.

На 2 делятся все четные числа. На 3 и 9 делятся числа, у которых сумма цифр делится нацело на 3 и на 9. (Пример: Число 1377 делится на 3 и на 9, так как сумма цифр 1+3+7+7=18 делится нацело на 3 и на 9). На 4 делятся те и только те числа, у которых число, записанное последними двумя цифрами делится нацело на 4. (Пример: Число 23864 делится на 4, так как число 64 делится на 4). На 8 делятся только те числа, у которых число, записанное последними тремя цифрами делится нацело на 8. (Пример: Число 23864 делится на 8, так как число 864 делится на 8). На 5 делятся те и только те числа, которые заканчиваются цифрой 0 или 5. На 10 делятся только те числа, которые заканчиваются цифрой 0.

Деление с остатком

Разделить целое число a на https://pandia.ru/text/80/218/images/image019_89.gif" width="79" height="27">.

Определение 11: Целое число d называется наибольшим общим делителем целых чисел a 1 , a 2 ,…, an , если d – общий делитель этих чисел, d делится на любой общий делитель чисел a 1 , a 2 ,…, an .

Найти НОД(-135; 180).

Ответ: НОД=45.

НОК (a1,a2,…,an) или

Определение 10: Целое число m называется общим кратным чисел a 1 , a 2 ,…, an (целых) не равных нулю, если m делится на каждое из этих чисел a 1 , a 2 ,…, an .

Определение 11: Целое число m называется наименьшим общим кратным (НОК) целых чисел a 1 , a 2 ,…, an , если m является общим кратным этих чисел, и любое общее кратное этих чисел делится нацело на m .

https://pandia.ru/text/80/218/images/image021_88.gif" width="612" height="144">

Число 1 не является ни простым, ни составным числом.

Алгоритм нахождения НОД (алгоритм Евклида ): последний не равный нулю остаток является НОД данных чисел.

Найти НОД(7560;825)

Ответ: НОД=15.

Целые числа a 1 , a 2 ,…, an называются взаимно простыми, если их НОД=1.

https://pandia.ru/text/80/218/images/image023_87.gif" width="161" height="33">, где pi – простые числа, .

Замечание: разложение любого числа n на простые множители называется канонической записью числа n.

Правило нахождения НОД:

Разложить число на простые множители. Составить произведение из всех простых множителей с наименьшим показателем степени. Найти произведение.

Ответ: НОД=4.

Правило нахождения НОК:

Разложить число на простые множители. Составить произведение из всех простых множителей одного числа и недостающих другого. Найти это произведение. Рациональные числа и действия над ними

Определение 12: Под множеством рациональных чисел (Q ) понимают множество обыкновенных несократимых дробей вида https://pandia.ru/text/80/218/images/image026_72.gif" width="84" height="21 src=">.

Множество Q замкнуто относительно всех четырех арифметических операций.

Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то дробь не изменится:

Обыкновенная дробь вида называется десятичной.

Теорема 1 . Несократимую дробь можно обратить в конечную десятичную дробь тогда и только тогда, когда в разложении ее знаменателя на простые множители содержатся только цифры 2 и 5 или их степени или знаменатель равен 1.

https://pandia.ru/text/80/218/images/image030_62.gif" width="612" height="228">

Определение 13: Десятичная дробь называется бесконечной периодической , если у нее цифра или группа цифр после запятой последовательно повторяются.

1,0(77); 1,0(27).

Теорема 2 . Любая бесконечная периодическая дробь является представлением некоторого рационального числа и наоборот.

Правило представления бесконечной периодической дроби в обыкновенную :

из числа, стоящего до второго периода вычесть число, стоящее до первого периода и сделать эту разность числителем, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и 0 столько раз, сколько цифр между запятой и первым периодом.

Ответ: https://pandia.ru/text/80/218/images/image032_56.gif" width="131" height="41">.

R = Q +иррациональные числа .

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Что такое множества, где и как они применяются

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Ели ли Вы сегодня обед? Сейчас станет известна страшная тайна. Обед является множеством. А именно, множеством блюд, из которых он состоит. В нём (как правило) нет одинаковых блюд, и во множестве все элементы должны быть разными. А, если на обед у Вас был тот же самый салат, что и на завтрак, то этот салат является пересечением множеств "Обед" и "Завтрак".

Взгляните на книгу, лежащую на столе или стоящую на полке. Она является множеством страниц. Все страницы в ней отличаются друг от друга, по меньшей мере номерами.

А улица, на которой Вы живёте? Она является собранием многих разных объектов, но обязательно есть множество домов, расположенных на этой улице. Поэтому множество домов является подмножеством множества "Улица".

Итак, мы рассмотрели не только примеры множеств, но и пример операции над множествами - пересечение, а также отношение включения подмножества во множество. Все эти понятия будем рассматривать подробно на этом уроке.

Но пока ещё один пример практического рассмотрения множеств.

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Лучшие статьи по теме