Букеты, живые цветы, комнатные растения
  • Главная
  • Цветы
  • Электромагнитное поле корабля. Корабли размагнитят одной кнопкой

Электромагнитное поле корабля. Корабли размагнитят одной кнопкой

И.Г. ЗАХАРОВ - доктор технических наук, профессор, контр-адмирал,
В.В. ЕМЕЛЬЯНОВ - кандидат технических наук, капитан 1 ранга,
В.П. ЩЕГОЛИХИН - доктор технических наук, капитан 1 ранга,
В.В. ЧУМАКОВ - доктор медицинских наук, профессор, полковник медицинской службы

К наиболее известным физическим полям кораблей относятся гидроакустическое, магнитное, гидродинамическое, электрическое, низкочастотное электромагнитное, поле кильватерного следа, проявляющиеся в основном в морской среде, а также тепловое, вторичное радиолокационное, оптико-локационное и другие поля, проявляющиеся, как правило, в пространстве над кораблем. Физические поля используются при срабатывании неконтактных взрывателей в минах и торпедах, а также для обнаружения подводных лодок, находящихся в подводном положении. Опыт Второй мировой войны показывает, что большая часть потопленных кораблей подорвалась на минах.

Совершенствование шумопеленгаторов и гидролокаторов, появление минного и торпедного оружия, реагирующего на шум корабля, с особой остротой поставили вопрос об уменьшении звукоизлучения кораблей и снижении величины гидролокационного отражения, что повышает их акустическую скрытность, защиту от поражения оружием и улучшает условия работы собственных гидроакустических средств.

Во время Великой Отечественной войны ученые институтов ВМФ, ЦНИИ им. академика А.Н. Крылова, специалисты проектных организаций и судоверфей искали пути уменьшения шума подводных лодок и тральщиков за счет установки виброактивных механизмов на амортизаторы и применения глушителей для дизельных двигателей (И.И. Клюкин, О.В. Петрова). Война выявила явную недостаточность и несовершенство существовавших в то время средств акустической защиты отечественных кораблей. Поэтому уже в первые послевоенные годы начали создаваться специальные лаборатории и научные коллективы, назначение которых определялось необходимостью уменьшения акустических параметров кораблей (М.Я. Минин, Ю.М. Сухаревский). Появились первые относительно малошумные гребные винты. Наиболее шумные механизмы устанавливались на амортизаторы, применялись резинометалические соединения.

Начало проектирования и строительства первых атомных подводных и быстроходных противолодочных кораблей, оснащенных гидроакустическими станциями, дало импульс развитию корабельной акустики. Изучение физической природы шумообразования корабля, разработка первых приближенных расчетных схем для оценки звукоизлучения корпуса корабля, его гребных винтов, создание более эффективных средств звуко- и виброизоляции и вибропоглощения, изучение природы и источников виброактивности корабельных механизмов и систем, разработка и создание приборов и методик для замеров и исследований шумов кораблей и вибраций их механизмов явились основными направлениями корабельной акустики. Ими занимались в ЦНИИ им. А.Н. Крылова, 1-м ЦНИИ МО, Акустическом институте АН СССР. Первые научные школы создавались под руководством Л.Я. Гутина, Я.Ф. Шарова, А.В. Римского-Корсакова, Б.Д. Тартаковского, Б.Н. Машарского, Н.Г. Беляковского, И.И. Клюкина. А.Д. Перника. В 1956-1958 гг. 1-м ЦНИИ МО и ЦНИИ им. академика А.Н. Крылова проведены первые специализированные натурные акустические испытания надводных кораблей с использованием измерительных гидроакустических судов. Результаты испытаний и исследований характеристик и источников гидроакустического поля кораблей позволили сформулировать обоснованные рекомендации по проектированию акустической защиты первых атомных подводных лодок и снижению акустических помех работе гидроакустических станций надводных кораблей. Одновременно шла подготовка научных кадров, велось обучение специалистов по акустической защите кораблей для проектных организаций, судоверфей и флотских подразделений.

С начала 60-х годов стали формироваться и реализовываться комплексные программы НИОКР, направленные на совершенствование акустических характеристик подводных лодок и надводных кораблей. Курирование этих программ осуществлялось Научным советом по комплексной программе "Гидрофизика" при Президиуме АН СССР (руководитель - президент АН СССР А.П. Александров). Непосредственное руководство выполнением этих программ осуществляли ведущие ученые и организаторы научных исследований - Я.Ф. Шаров, Б.А. Ткаченко, Г.А. Хорошев, Л.П. Седаков, А.В. Авринский, В.Н. Пархоменко, Э.Л. Мышинский, В.С. Иванов.

В последующие годы работами ЦНИИ им. академика А.Н. Крылова, 1-м ЦНИИ МО, институтов АН СССР, проектно-конструкторских организаций и заводов-судоверфей были достигнуты значительные успехи в решении задач снижения подводной шумности подводных лодок и надводных кораблей. За последние 30 лет уровни подводного шума отечественных подводных лодок уменьшились более чем на 40 дБ (в 100 раз).

Это стало возможным в результате многочисленных теоретических и экспериментальных исследований физической природы распространения вибрации по корпусным конструкциям кораблей и их звукоизлучения в воду. Была создана физико-математическая модель для подводной лодки и надводного корабля как сложного многоэлементного излучателя подводного шума, на базе которой не только выполняются прогнозные оценки ожидаемых уровней шумоизлучения корабля, но и разрабатываются рекомендации по архитектуре и конструкции корпуса и его элементов, по размещению механизмов и систем корабля. К решению проблемных вопросов теории вибрации и звукоизлучения корпусов кораблей и их конструкций привлекались ученые Ростовского государственного университета, Института проблем механики АН СССР, Института машиноведения АН СССР (И.И. Ворович, А.Л. Гольденвейзер, А.Я. Ционский, А.С. Юдин, Г.Н. Чернышев, А.З. Авербух, Г.В. Тарханов), которые внесли важный вклад в развитие представлений о виброакустике оболочечных конструкций, аппроксимирующих корпус подводной лодки. Для снижения вибровозбудимости и уменьшения звукоизлучения корпусных конструкций были созданы и применены на кораблях специальные вибропоглощающие звукоизолирующие и звукопоглощающие покрытия. Их применение обеспечило уменьшение шума внутри помещений корабля и улучшило условия жизни и работы экипажа. Нанесение покрытий снаружи корпуса уменьшило отражение от корпуса гидролокационных сигналов.

При разработке и создании покрытий был решен ряд физических и технических задач по рациональному подбору материалов покрытий и их конструкций, позволившему обеспечить наряду с требуемыми акустическими характеристиками покрытий их прочность и надежность.

Существенный прогресс достигнут в области создания малошумных гидравлических и воздушных систем. На основе теоретического обобщения многих экспериментов, проведенных на гидро- и аэродинамических стендах, были разработаны принципы создания малошумных дроссельно-регулирующих устройств и других механизмов (Я.А. Ким, И.В. Малоховский, В.И. Голованов, А.В. Авринский).

Работы по снижению вибрации и шума корабельных механизмов и систем касались, прежде всего, турбозубчатых агрегатов, насосов, вентиляторов, электромеханизмов и другого оборудования. Важные работы проводились по роторным системам, кривошипно-шатунным механизмам, подшипникам. Изучались электромагнитные источники шума и вибрации в электродвигателях, электромашинах и статических преобразователях. В этих работах, наряду со специалистами ЦНИИ им. академика А.Н. Крылова и 1-го ЦНИИ МО (К.И. Селиванов, А.П. Головнин, Х.А. Гуревич, Э.Л. Мышинский, С.Я. Новожилов, Е.Н. Афонин и др.), активное участие принимали ученые Института машиноведения АН СССР и инженеры машиностроительной отрасли (Р.М. Беляков, Ф.М. Диментберг, Э.Л. Позняк, И.Д. Ямпольский, Б.В. Покровский и другие).

На основании теоретического анализа и обработки большого количества экспериментальных данных были определены зависимости акустических характеристик основных типов механизмов от энергетических параметров и тем самым обеспечено проектирование оптимальной энергетической установки. Практически для каждого поколения подводных лодок и надводных кораблей разрабатывались средства виброизоляции: амортизаторы, гибкие рукава, патрубки, мягкие подвески трубопроводов и муфт. От поколения к поколению их виброизолирующая способность удваивалась. Разрабатывались специальные виброизолирующие фундаменты, двухкаскадные схемы виброизолирующих креплений. В итоге работ, проводившихся под руководством специалистов ЦНИИ им. академика А.Н. Крылова, 1-го ЦНИИ ВМФ (Г.Н. Белявский, Я.Ф. Шаров, В.И. Попков, Н.В. Капустин, К.Я. Мальцев, И.Л. Орем, В.Р. Попинов), отечественное судостроение располагает широким набором амортизирующих и виброизолирующих конструкций, способных обеспечить значительное снижение вибрации и шума. Из уникальных конструкций следует отметить пневматические и низкочастотные амортизаторы на нагрузку 0,5-100 т, гибкие рукава для трубопроводов с давлением рабочей среды до 10000 кПа и некоторые другие.

Хороший эффект получен от применения средств вибропоглощения в судовом энергетическом оборудовании, трубопроводах, рамных и фундаментальных конструкциях. Так, выполненные из составных балок (типа сэндвич) пространственные рамы для агрегатных сборок механизмов обеспечили снижение шума на величину до 15 дБ при полном сохранении несущей способности. Составные структуры с внутренними вязкоупругими слоями нашли применение в конструкциях трубопроводов, пиллерсов и гребных винтов. Специальные кожухи для механизмов, глушители для воздушных магистралей и трубопроводов систем забортной воды также способствовали снижению шума.

Системы активного подавления вибрации механизмов и шума были созданы коллективом ученых и специалистов ЦНИИ судовой электротехники под руководством А.В. Баркова и В.В. Малахова. В Институте машиностроения СССР (РАН) проведены исследования и разработки активных устройств для снижения вибрации механизмов и в системе движитель-вал-корпус (В.В. Яблонский, Ю.Е. Глазов, С.А. Тайгер).

Большой цикл исследований был выполнен учеными и специалистами ЦНИИ им. академика А.Н. Крылова и машиностроительных предприятий с целью создания компактных энергоустановок с высокой удельной энергонапряженностью, обладающей эффективной системой подавления акустической энергии на всех путях ее распространения - по корпусным конструкциям, по жидкой среде в трубопроводах и по окружающему воздушному пространству. Осуществлен поиск и найдены варианты рационального размещения виброактивных механизмов с учетом их взаимодействия, оптимального использования невиброактивных конструкций, исключения резонансных режимов агрегатированных сборок и многое другое. В этой связи необходимо отметить многолетние плодотворные работы В.И. Попкова и его научной школы.

Внедрение результатов этих исследований в блочные энергетические установки, созданные на Ленинградском Кировском заводе (главный конструктор - М.К. Блинов) и Калужском трубном заводе (главный конструктор - академик В.И. Кирюхин), позволило создать машины, обеспечивающие постройку малошумных подводных лодок.

Сформулированы принципы "равнопрочной" акустической защиты энергоустановок (ЭУ), при которой передача звуковой энергии по различным путям ее распространения оказывается приблизительно одинаковой. Огромная информация о виброакустическом состоянии механизмов, накопленная в период стендовых и натурных акустических испытаний механизмов и ЭУ, позволила предложить ряд методов контроля вибрации и шума, диагностики технического состояния механизмов.

Неравномерность поля скоростей в диске гребного винта, другие гидродинамические причины обусловливают появление нестационарных усилий на гребном винте, которые через валопровод и подшипники передаются на корпус корабля, вызывая его интенсивные колебания (и как следствие, ухудшая условия обитаемости на корабле), значительное звукоизлучение в воду на низких частотах.

Для решения проблемы снижения низкочастотного излучения были развернуты работы по виброизоляции гребного винта от корпуса за счет включения упругих элементов в систему связей винта с валом и корпусом, представляющей сложную научную и инженерную задачу. Под руководством С.Ф. Абрамовича, М.Д. Генкина, К.Н. Пахомова, Ю.Е. Глазова специалистами ЦНИИ им. академика А.Н. Крылова и проектных организаций найден ряд эффективных конструктивных решений этой задачи.

Параллельно с разработкой пассивных средств акустической защиты (виброизолирующие устройства, акустические покрытия и др.) проводились работы по исследованию возможностей применения активных методов гашения (компенсации) гидроакустического поля корабля. В этом направлении велись работы в Акустическом институте АН СССР (Б.Д. Тарковский, Г.С. Любашевский, А.И. Орлов), реализовались идеи М.Д. Малюжинца (работами руководили В.В. Тютекин, В.Н. Меркулов). В ЦНИИ им. академика А.Н. Крылова предложены и исследованы активно-пассивные устройства гашения шума в трубопроводах (В.Л. Маслов, Л.И. Соловейчик), а также системы компенсации корабельных помех работе гидроакустических средств.

Решение проблемы снижения корабельных помех работе гидроакустических средств потребовало проведения исследований: по распространению звука и вибрации от источников на корабле к местам расположения приборов гидролокации; по статическим характеристикам турбулентного пограничного слоя на обтекателе антенн ГАС и излучению звука конструкциями обтекателей ГАС под действием сил турбулентного пограничного слоя, а также по созданию обтекателей антенн ГАС, обладающих требуемыми помехозащитными свойствами, звукопрозрачностью, прочностью и устойчивостью. Необходимо было изучить дифракцию звуковых волн на телах произвольной формы.

Для проведения исследований был разработан комплекс специализированных экспериментальных установок, макетов и стендов. На этой экспериментальной базе, а также в натурных условиях велись работы, в результате которых удалось создать теорию образования корабельных акустических помех. На ее основе созданы методики расчетной оценки уровней этих помех и прочности обтекателей, а также разработаны рекомендации и мероприятия по снижению помех. На подводных лодках внедрены помехозащитные безнаборные конструкции обтекателей основных антенн ГАС, обеспечивающие не только снижение помех гидродинамического турбулентного происхождения, особенно проявляющихся на больших скоростях, но и удовлетворяющие требованиям по звукопрозрачности и прочности.

Решение задачи снижения помех на надводных кораблях шло по пути использования экранирующих устройств корпуса судна и разработок и внедрения помехозащитных экранов (коффердамов) различной формы в т.ч. и напряженных. Выполнение комплекса теоретических и экспериментальных исследований, внедрение в проекты кораблей новых типов обтекателей и других технических решений и средств позволило, как показали натурные испытания, обеспечить снижение собственных акустических помех на подводных лодках в 40 раз, а на надводных кораблях - в 20 раз.

Решение проблемы уменьшения подводного шума кораблей невозможно без исследований и измерений энергетических, спектральных, пространственных, статистических и других характеристик шумов и вибрации. В связи с этим ЦНИИ им. академика А.Н. Крылова и 1-й ЦНИИ МО провели цикл работ по созданию практических методик измерений и исследований по поиску источников шума кораблей, по разработке требований к соответствующим комплексам аппаратуры. В итоге этих работ, выполнявшихся при участии предприятий Госстандарта ВНИИМ им. Д.И. Менделеева, ВНИИ ФТРИ и др., измерительные суда и измерительные полигоны были оснащены современными приборами. На кораблях и заводских испытательных стендах размещены системы вибро- и шумоизмерений для контроля механизмов и агрегатов кораблей. Метрологическая база, включающая оригинальные методы и методики, а также средства измерений и исследований шумовых и виброакустических характеристик кораблей и их механизмов, созданы под научным руководством и при активном участии Б.Н. Машарского, Г.А. Сурина, Г.А. Розенберга, А.Е. Колесникова, Г.А. Чуновкина, В.А. Постникова, В.И. Попкова, А.Н. Новикова, А.К. Квашенкина, М.Я. Пекального, В.П. Щеголихина, В.И. Теверовского, В.А. Киршова, В.К. Маслова и других.

Были организованы и проведены расширенные испытания практически всех серий современных подводных лодок и надводных кораблей (Г.А. Матвеев, Г.А. Хорошев, В.С. Иванов, Э.С. Качанов, И.И. Гусев), определены источники акустических и электромагнитных полей, оценена эффективность использованных на них средств защиты и разработаны мероприятия по дальнейшему снижению уровня этих полей.

Работы по созданию систем магнитной защиты кораблей и методов их размагничивания были начаты в 1936 г. под руководством А.П. Александрова. В ходе Великой Отечественной войны силами ученых Академии наук и военно-морских инженеров в неимоверно короткие сроки были разработаны системы и методы магнитной защиты и произведено оборудование ими кораблей. В группу ученых входили: А.П. Александров, В.Р. Регель, П.Г. Степанов, А.Р. Регель, Ю.С. Лазуркин, Б.А. Гаев, Б.Е. Годзевич, И.В. Климов, М.В. Шадеев, В.М. Питерский, А.А. Светлаков, Б.А. Ткаченко и многие другие.

На флотах и флотилиях были созданы службы размагничивания кораблей, впоследствии преобразованные в службу защиты кораблей. После окончания войны работы по совершенствованию методов и средств магнитной защиты надводных кораблей и подводных лодок продолжались. Улучшались методы безобмоточного размагничивания, строились специальные суда размагничивания, создавались новые средства измерения и контрольно-измерительные станции, велась подготовка квалифицированных кадров.

Одним из важных направлений было совершенствование магнитной защиты кораблей противоминной обороны. Научное обоснование сформировано А.В. Романенко, Л.А. Цейтлиным, Н.С. Царевым. В результате разработана высокоэффективная система магнитной защиты, не однажды проверявшаяся в условиях боевого траления. Развитие средств магнитной защиты кораблей потребовало решения комплекса сложных технических проблем, в том числе создания Научно-исследовательского полигона ВМФ (1952 г.). В его становлении решающую роль сыграли офицеры: Л.С. Гуменюк, Б.А. Ткаченко, А.И. Карась, А.Ф. Барабанщиков, Г.А. Шевченко, А.В. Курленков, Я.И. Криворучко, А.В. Романенко, А.И. Игнатов, М.П. Гордяев, Н.Н. Демьяненко.

Полигон сыграл значительную роль в совершенствовании защиты кораблей по физическим полям. Он был оснащен новейшими образцами измерительной техники. В его состав входили уникальные сооружения и в их числе магнитный стенд, построенный в конце 50-х годов. Аналогичные стенды в США были построены спустя 15-20 лет.

Среди научно-технических проблем, решавшихся творческими коллективами ученых и инженеров страны, к наиболее важным относились: снижение магнитного поля кораблей, разработка систем автоматического управления токами в обмотках размагничивающих устройств, создание источников питания размагничивающих устройств, а также разработка аппаратуры для измерения магнитных полей кораблей. В процессе работы по этим направлениям сформировалась целая плеяда квалифицированных ученых. Без имен Е.П. Лапицкого, А.П. Латышева, С.Т. Гузеева, Л.А. Цейтлина, А.В. Романенко, И.С. Царева, Н.М. Хомякова, Э.П. Рамлау трудно представить становление теории магнитной защиты кораблей. Позже этот перечень дополнился такими именами, как В.В. Иванов, В.Т. Гузеев, А.Д. Ронинсов, А.В. Найденов, А.В. Максимов, Л.К. Дубинин, Н.А. Зуев, А.И. Игнатов, И.П. Краснов, А.Г. Шленов, Д.А. Гидаспов, Б.М. Кондратенко, Л.А. Прорвин, В.Я. Матисов, Ю.М. Логунов, Ю.Г. Брядов, Е.А. Сезонов, В.А. Быстров, В.Э. Петров, М.М. Приемский, Н.В. Ветерков, В.В. Мосягин.

В создании систем автоматического управления токами в обмотках размагничивающего устройства в функции магнитного поля принимали участие А.В. Скулябин, Ю.Г. Брядов, Е.А. Сезонов, О.Е. Мендельсон, А.В. Романенко, О.П. Рейнганд, З.Е. Оршанский, В.А. Могучий. Создание источников питания размагничивающих устройств и импульсных генераторов для судов размагничивания являлось самостоятельной проблемой. В ее решении участвовали большие коллективы НИИ судостроительной и электротехнической промышленности.

Повседневная работа службы защиты кораблей на флотах тесно связана с измерениями магнитного поля кораблей. Измерения проводятся с помощью специальных магнитомеров. Одним из первых магнитомеров, использовавшихся на флотах, был английский магнитомер "Пистоль". Измерения магнитных полей движущихся кораблей выполнялись с помощью петлевых датчиков, уложенных на грунте и подключенных к флюксметру. После второй мировой войны был создан первый отечественный магнитомер ПМ-2, главным конструктором которого был Г.И. Кавалеров. Затем появились серии корабельных магнитомеров, переносных и стационарных. В число их разработчиков входили С.А. Скородумов, Н.И. Яковлев, В.В. Орешников, И.В. Стариков, Р.В. Аристова, Н.М. Семенов, Ю.П. Обоишев, В.К. Жулев, а также коллектив инженеров под руководством Ю.В. Тарбеева. Таким образом, усилиями ученых, инженеров, рабочих были созданы научные основы и техническая база на флотах для постоянного функционирования службы защиты кораблей от неконтактного минно-торпедного оружия.

Новыми направлениями в области защиты кораблей по физическим полям, возникшими в 50-х годах, стали исследования низкочастотного электромагнитного и стационарного электрического полей корабля. Необходимость в этих исследованиях диктовалась тем, что такие физические поля могут использоваться как для контактного минно-торпедного оружия, так и для систем обнаружения подводных лодок. Основным информационным признаком корабля, на использовании которого построены различные активные системы наведения большинства противокорабельных ракет, считается заметность корабля в различных частотных диапазонах электромагнитного излучения, что и обусловило развитие средств снижения этой заметности.

Работы по снижению заметности надводных кораблей в радиодиапазоне были начаты в 60-е годы НИИ ВМФ и промышленности. Создавались специальные стенды, на которых в лабораторных условиях на моделях кораблей определялись параметры вторичного (отраженного) радиолокационного поля. У истоков создания стендов стояли такие ученые, как В.Д. Плахотников, Л.Н. Гриненко, Д.В. Шанников, В.О. Кобак, В.П. Пересада, Е.А. Штагер (впоследствии ведущие специалисты в области исследования радиолокационных характеристик кораблей).

Для исследования радиолокационных характеристик в натурных условиях созданы специальные измерительные комплексы. Были введены в эксплуатацию стационарные радиолокационные полигоны на Балтийском и Черном морях. Первый из них в заливе Хара-Лахт в Эстонии принадлежал 1-му ЦНИИ МО и располагал радиолокационным измерительным комплексам РИК-Б. На нем впервые исследованы параметры вторичного радиолокационного поля отечественных кораблей в натурных условиях. Выполнение этой работы поручалось Г.А. Печко и В.М. Горшкову. Полигон в Севастополе был дополнительно укомплектован несколькими специализированными радиолокационными станциями с высоким разрешением по двум координатам и трехчастотной разных диапазонов и назначений. Особая заслуга в его создании принадлежит Е.А. Штагеру. В связи с утратой измерительных комплексов в Эстонии и на Украине основная нагрузка в части измерения параметров вторичного радиолокационного поля кораблей ВМФ ныне легла на район г. Приморска Ленинградской области, куда в 1993 г. перебазировался полигон 1-го ЦНИИ МО.

Результаты измерений радиолокационных характеристик отечественных кораблей за период 60-90-х годов позволили создать атлас, в который вошло большинство кораблей и судов ВМФ. Было установлено, что на поверхности любого надводного корабля существуют области интенсивного локального отражения, которые вносят основной вклад в отраженное поле. Это обстоятельство, помимо разработки метода расчета средней эффективной поверхности рассеяния корабля, обусловило развитие разработки методов и средств радиолокационной защиты. Исследования, выполненные организациями ВМФ и промышленности, показали, что для уменьшения интенсивности отражения радиолокационных сигналов необходимо преобразовать сильноотражающие корабельные конструкции в малоотражающие путем придания корабельным конструкциям малоотражающих форм (архитектурные решения), а также использовать радиопоглощающие материалы.

Работы по созданию корабельных радиопоглощающих материалов были начаты в 50-е годы. В это время разработаны радиопоглощающие покрытия - "Тент", "Кольчуга", "Лист", "Щит". Однако первое поколение радиопоглощающих покрытий (РПП) не было внедрено в кораблестроение из-за больших массогабаритных характеристик, а также вследствие сложной технологии крепления их к защищаемым корабельным конструкциям. Для создания новых радиопоглощающих материалов привлечен более широкий круг организаций ВМФ, Академии наук, предприятий Минхимпрома, Миннефтехимпрома, Минцветмета, Минвузов и Минсудпрома. Большой вклад в эти исследования внесли такие ученые, как Ю.М. Патраков, А.П. Петренас, В.В. Кушелев, Ю.Д. Донков: они показали, что введение в стеклопластик полупроводящих углеродных тканей придает ему поглощающие свойства. В 1965 г. были получены первые образцы прочного радиопоглощающего углестеклопластика, получившего название "Крыло", из которого затем изготовлена надстройка разъездного катера. Применение этого материала позволило снизить отраженное поле судна в 5-10 раз. Так был создан первый практический радиопоглощающий конструкционный материал.

Для широкого внедрения радиопоглощающих средств на корабли необходимы покрытия с малым весом, малой толщины, прочные и стойкие к жестким морским условиям. Эти требования наложили свой отпечаток на характер и направление работ в этой области. В 1972-1974 гг. Ю.М. Патраковым, Р.И. Энглином, Н.Б. Бессоновым, Г.И. Бякиным были разработаны первые образцы тонкослойных поглотителей ("Лак", "Экран"). В 1976 г. первое покрытие "Лак" установили на одном из малых противолодочных кораблей. Результаты натурных испытаний показали, что покрытие "Лак" позволяет снизить отраженный сигнал в 5-10 раз.

Параллельно с РПП "Лак" в конце 70-х годов группой ученых под руководством А.Г. Алексеева осуществлена разработка и выполнены натурные испытания магнитоэлектрического покрытия ("Ферроэласт"). Его нанесли на большой противолодочный корабль. Эффективность этого покрытия примерно аналогична РПП "Лак". Дальнейшие работы по созданию третьего поколения корабельных покрытий связаны с поиском новых более эффективных наполнителей, усовершенствованием технологии нанесения ("Лак-5М"), расширением частотного диапазона и повышением поглощающих свойств ("Лак-1 ОМ"), снижением массогабаритных параметров ("Лакмус").

Работы по тепловой защите или снижению заметности надводных кораблей для тепловых (инфракрасных) систем были начаты с середины 50-х годов в 14-м НИИ ВМФ и 1-м ЦНИИ МО. На начальной стадии разработаны методики расчета теплового излучения кораблей, измерены распределения температур по поверхности корабля, предложен и испытан ряд средств тепловой защиты и ложных тепловых целей. С 1965 г. к работам подключился ЦНИИ им. академика А.Н. Крылова в качестве головной организации отрасли. У истоков развития этого направления стояли СЛ. Брискин, С.Ф. Баев. В 1974 г. созданы базовые испытательные подразделения для натурных измерений температурных полей кораблей в Севастополе, Калининграде, Северодвинске и Владивостоке. Систематические измерения, их анализ, методические разработки привели к существенному расширению номенклатуры применяемых средств тепловой защиты и к снижению уровня теплового излучения кораблей до значений, соответствующих лучшим зарубежным кораблям. Этому значительно способствовали натурные исследования тепловых полей на полигоне 1-го ЦНИИ МО на Балтийском и Черном морях, на базе ЧВМУ им. П.С. Нахимова, проведенные учеными С.П. Сазоновым, В.И. Лопиным, В.Ф. Барабанщиковым, К.В. Тюфяевым.

В середине 70-х годов в ЦНИИ им. академика А.Н. Крылова создан теплотехнический стенд для исследования процессов теплообмена в корабельных дымовых трубах, разработаны методики расчета температурных полей корпуса и поверхности дымовых труб кораблей, а также методики измерений температур в натурных условиях.

С конца 80-х годов Минсудпромом и ВМФ совместно с другими отраслями осуществляется переход к непосредственным измерениям параметров тепловых полей надводных кораблей. Разрабатываются методики сдаточных испытаний кораблей по тепловому полю, создается контрольно-измерительная и исследовательская аппаратура, разрабатываются методы математического моделирования теплового поля (теплового портрета) корабля и оценки его защищенности на стадии технического проектирования. Определяются дальнейшие возможности снижения теплового поля кораблей. Большой вклад в эту работу внесли И.Г. Утянский, П.А. Епифанов.

Работы по оптиколокационной защите, то есть по снижению заметности надводных кораблей для лазернолокационных систем, были начаты в середине 70-х годов НИИ ВМФ и Минсудпрома с последующим привлечением организаций Академии наук, Минхимпрома, Миноборонпрома и других ведомств. Неоценимый вклад в разработку теоретической модели рассеяния лазерного излучения морскими объектами, а также методики расчета их защищенности внесли М.Л. Варшавчик и Б.Б. Семевский.

В 80-х годах была создана аппаратура для исследования оптико-локационных характеристик морских объектов в лабораторных и натурных условиях. Лабораторный стенд укомплектован аппаратурой, измеряющей коэффициенты отражения и яркости корабельных материалов как чистых, так и с поверхностной пленкой, например водной, а также материалов, расположенных в воде.

Для натурных измерений оптико-локационных характеристик кораблей и поверхности моря были введены в эксплуатацию два береговых лазерных измерительных комплекса на Черном (на базе Севастопольского ВВМУ) и Балтийском (на полигоне 1-го ЦНИИ МО) морях. В создании этих комплексов и исследований оптико-локационных характеристик кораблей принимали участие Ю.А. Солевон и Е.Г. Лебедько.

Проблема борьбы с гидродинамическими минами особенно остро встала перед отечественным ВМФ в 1945-1946 гг. во время операции по освобождению Северной Кореи. Ее порты были заминированы с воздуха американцами перед вступлением СССР в войну с Японией. В ходе высадки десантов, при обеспечении боевых действий войск и продолжавшегося более года (в том числе в послевоенное время) траления, флот понес ощутимые потери. Требовалось решить ряд научно-исследовательских проблем.

Учеными Г.В. Логвиновичем, Л.Н. Сретенским и В.В. Шулейкиным были разработаны основы теории гидродинамического поля. Ее использовали для оценок придонных гидродинамических давлений под кораблями, создания отечественных образцов измерительной аппаратуры и взрывателей мин, а также для разработки предложений по тралению этих мин и защиты от них кораблей и судов. Была создана стационарная экспериментальная база, разработаны методики измерений и проведены систематические измерения гидродинамического поля основных кораблей и судов ВМФ и дана оценка эффективности некоторых способов "гидродинамической" защиты кораблей (1-й ЦНИИ МО, руководитель Н.К. Зайцев). Особое внимание уделено оценке допустимых уровней гидродинамичекого поля. С этой целью на временных стендах в районах некоторых баз флота были проведены замеры параметров фонового поля. Организацией временных стендов, проведением измерений, обработкой и анализом результатов руководил Б.Н. Седых.

Специалистами 1-го ЦНИИ МО были разработаны теоретические основы комплексного волнового метода гидродинамической защиты кораблей. Основные положения этого метода подтверждены экспериментально на стационарном гидродинамическом полигоне. По результатам этих исследований впервые в мировой практике создан принципиально новый тип корабля противоминной обороны: опытный быстроходный, тральщик - волновой охранитель, проекта 1256. В разработке метода, проектировании и опытной эксплуатации этих кораблей активное участие приняли специалисты 1-го ЦНИИ В.С. Воронцов, М.М. Демыкин, О.К. Коробков, А.Н. Муратов, В.И. Салажов, Б.Н. Седых, Н.А. Цибульский; НИИП 1-го ЦНИИ МО - В.А. Дмитриев, Н.Ф. Корольков, И.В. Терехов; Западного ПКБ - М.М. Корзенева, В.И. Немудов; ЦНИИ им. академика А.Н. Крылова - К.В. Александров, А.И. Смородин. Результаты опытной эксплуатации подтвердили эффективность волнового метода и позволили наметить пути совершенствования кораблей противоминной обороны нового типа.

Наряду с решением задач гидродинамической защиты проводились исследования проблемы скрытности подводных лодок от средств обнаружения по гидрофизическим полям в кильватерном следе и на свободной поверхности. В ходе этих исследований впервые в стране созданы аппаратурные комплексы и проведены надежные измерения параметров кильватерного следа подводной лодки и фона. Результаты исследований используются для выработки мероприятий по обеспечению скрытности подводных лодок.

Размагничивание кораблей Черноморского флота в годы Великой Отечественной войны Панченко Виктор Дмитриевич

Безобмоточное размагничивание кораблей. Организация СБР-1, СБР-2, СБР-3. Полигон для проверки качества размагничивания. Разработка автоматического регулятора тока в курсовых обмотках

Первые опыты по безобмоточному размагничиванию подводных лодок под руководством А. П. Александрова были начаты еще до приказа командующего ЧФ от 10 сентября 1941 г. Они проводились в Южной бухте, у пирсов 1-й бригады подводных лодок, 4–5 июля (Щ-211) и 23–25 июля (Л-5). В обоих случаях были получены обнадеживающие результаты. Позже, 17 и 20 августа 1941 г., английскими офицерами, находившимися тогда в Севастополе, было проведено показательное безобмоточное размагничивание подводных лодок С-32 и М-111. В дальнейшем эта работа проводилась без участия англичан под руководством ученых ЛФТИ.

Первая плавучая станция безобмоточного размагничивания кораблей (СБР-1) была оборудована на несамоходной металлической барже СП-98 водоизмещением около 150 т. Все понимали, что для СВР хорошо было бы использовать самоходное судно с деревянным корпусом, чтобы оно своим магнитным полем не создавало помех, но к этому времени все мобилизованные суда были уже приспособлены для различных нужд Военно-Морского Флота, например для траления мин, перевозки боезапасов, продовольствия и мелких грузов.

В качестве источников питания на СБР-1 была установлена аккумуляторная батарея из 60 элементов типа КСМ, снятая с подводной лодки типа Щ, где она уже отработала установленный срок, но еще была пригодна для эксплуатации в условиях СБР. Кроме того, был установлен щит управления с коммутационной аппаратурой и приборами, а также получено несколько сот метров кабеля типа НРМ.

Штат СБР-1 первоначально состоял из 12 человек, включая начальника, инженера, двух электриков и боцманскую команду.

25 августа на СБР-1 были начаты работы по безобмоточному размагничиванию кораблей. Для технического руководства этими работами до освоения офицерским составом используемых методов к экипажу были временно прикомандированы научный сотрудник ЛФТИ Ю. С. Лазуркин, конструктор ЦКБ-52 Волович, инженер Техотдела ЧФ Рабинович. Начальником СБР-1 был назначен военный инженер III ранга М. А. Горбунов, которого мы с И. Д. Кокоревым хорошо знали. Инженером СБР был назначен воентехник I ранга Н. А. Биятенко.

Михаил Алексеевич Горбунов после окончания Петербургского электротехнического института в 1914 г. был призван на службу в Военно-Морской Флот и назначен на должность трюмного инженера-механика эсминца «Пылкий» Черноморского флота. Революция застала его на Волжской военной флотилии, а после-окончания гражданской войны он был уволен в запас и работал в электротехнической промышленности. Михаил Алексеевич имел многолетний опыт монтажных и пуско-наладочных работ на многих электростанциях Советского Союза, был высококвалифицированным специалистом и умел работать с людьми. С первых дней войны он был призван в ВМФ и служил старшим инженером в Отделении энергетики Техотдела ЧФ.

Николай Алексеевич Биятенко, выпускник Харьковского электротехнического института, до войны работал на ХЭМЗе старшим инженером аппаратного отдела и был хорошим специалистом.

Началось комплектование команды СБР-2, а несколько позже и команды СБР-3. Начальником СБР-2 был назначен выпускник Военно-морской академии инженер-капитан III ранга М. Г. Алексеенко, для обеспечения работ по размагничиванию кораблей к экипажу были временно прикомандированы научный сотрудник ЛФТИ Е. Е. Лысенко, инженер ЦКБ-52 Богданов и начальник лаборатории 2-й бригады подводных лодок воентехник II ранга А. С. Шевченко.

Для СБР-2 была подобрана и получена небольшая самоходная рыболовецкая шхуна водоизмещением около 37 т. Ее корпус был сильно поврежден, но другого, более подходящего судна в то время не было. На ней установили аккумуляторную батарею из 20 элементов типа КСМ и щит управления. Было выделено необходимое количество кабеля. Шхуна предназначалась для безобмоточного размагничивания подводных лодок 2-й бригады (малые лодки). 22 сентября, после окончания оборудования, она ушла своим ходом из Севастополя в Феодосию. В конце сентября начальник Технического отдела ЧФ доложил в Москву, что на ЧФ сформированы и уже работают две СБР и подготовлено шесть специалистов.

Для СБР-1 и СБР-2 было выделено по одному английскому магнитометру типа «пистоль» (их получили в конце августа 1941 г.) и по одному отечественному магнитометру ЛФТИ типа «вертушка». Английские магнитометры предназначались для измерения только вертикальной составляющей магнитного поля корабля на фоне вертикальной составляющей земного магнитного поля. Они были построены на индукционном принципе, не имели вращающихся частей и были более удобны в работе.

Для СБР-1 в Севастополе был выбран стенд в районе Килен-бухты и оборудован крейсерскими бочками для постановки на них кораблей на двух главных курсах. Глубина места стенда составляла 12–14 м.

Уже первые месяцы работы показали: пропускная способность СБР-1 должна быть увеличена. На ней можно одновременно проводить обработку двух кораблей, ставя их по обеим сторонам СБР на определенном удалении от бортов и друг от друга. Это требовало изменения штатного расписания; большие затруднения и неудобства представляло отсутствие собственного хода у СВР: ей приходилось подолгу ожидать буксиров для перевода под зарядку аккумуляторов. Кроме того, во время налетов вражеской авиации корабли, которые находились на размагничивании, уходили со стенда, а СБР-1 оставалась среди бухты одна, как мишень для «прицельного» бомбометания.

В дальнейшем мы всегда стремились к тому, чтобы все СБР были самоходными, но судьбе было угодно иногда… по воле старшего начальства подбрасывать нам несамоходные баржи водоизмещением до 450 т. Слов нет, на такой барже можно было установить мощную аккумуляторную батарею, зарядный агрегат, оборудовать специальные помещения для работы и с комфортом разместить команду. Однако все эти прелести меркли перед недостатками, связанными с отсутствием своего собственного хода.

По роду деятельности СБР являлась оперативным техническим средством обеспечения деятельности боевых кораблей флота. Опыт военных лет и более позднего времени показал, что СБР должны без помощи буксиров, своим ходом, совершать переходы не только в пределах одного порта, но и между различными портами или местами постоянного или временного базирования соединений кораблей, районами траления, учений и подготовки операций. Так, например, во время траления магнитных и индукционных мин на Азовском море, где одновременно работало более 100 катерных электромагнитных тральщиков, у всей армады необходимо было систематически измерять магнитные поля, а в случае сильных сотрясений корпусов от взрывов вытравливаемых мин производить безобмоточное размагничивание. В связи с большим объемом работ тральщики работали почти круглосуточно, «не вынимая трала из воды». Перерывы для перехода в порт базирования СБР и измерения магнитных полей были крайне нежелательны. Поэтому для сбережения моторесурсов тральщиков и их более эффективного использования бригаде или отряду траления придавалась СБР, которая их обслуживала и кочевала вместе с ними из одного района траления в другой. Были и другие случаи, когда необходимо было осуществить маневр техническими средствами для выполнения большого объема работ в короткие сроки, например при подготовке к десантным операциям или к учениям.

В основе принципа безобмоточного размагничивания кораблей лежат следующие положения ферромагнетизма.

Известно, что всякое ферромагнитное тело, помещенное во внешнее магнитное поле, получает индуктивное и постоянное или остаточное намагничивания. Магнитное поле вблизи тела от индуктивного намагничивания в слабом внешнем поле, каким является земное магнитное поле, зависит от его величины и направления, т. е. от геомагнитной широты плавания и курса корабля. Магнитное поле от постоянного намагничивания возникает в результате явления гистерезиса. Величина остаточного намагничивания сильно возрастает, если на ферромагнитное тело действуют одновременно постоянное магнитное поле и упругие напряжения (вибрации, удары и др.) или постоянное и переменное магнитные поля.

В естественных земных условиях направления (знаки) магнитных полей индуктивного и постоянного намагничиваний совпадают и общее магнитное поле, в том числе и его вертикальная составляющая, суммируется.

Для того чтобы уменьшить вертикальную составляющую напряженности магнитного поля корабля, необходимо, очевидно, намагнитить корабль таким образом, чтобы вертикальная составляющая напряженности постоянного намагничивания была равна по величине и противоположна по знаку вертикальной составляющей индуктивного намагничивания корабля. Строго говоря, производилось не размагничивание, а намагничивание безобмоточным методом ферромагнитных масс корабля.

Для этого по обводу корабля, примерно на уровне ватерлинии, на пеньковых концах подвешивали толстый гибкий кабель. При пропускании по нему тока борта корабля намагничиваются. Часто для усиления эффекта намагничивали широкие пояса бортов корабля путем перемещения (натирания) кабеля в вертикальном направлении в момент пропускания тока. Если сила тока очень большая, то кабель настолько сильно притягивается к борту, что переместить его вручную не хватает сил. На больших торговых судах для перемещения кабеля в момент пропускания тока использовали краны, лебедки и т. п.

Устранение постоянного продольного и поперечного намагничиваний корабля безобмоточным методом производили в прямом смысле этого слова, т. е. размагничиванием.

Метод безобмоточного размагничивания кораблей с его модификациями при должном опыте работы оказался достаточно гибким и позволил с небольшими затратами технических средств защитить подводные лодки, вспомогательные суда и малые корабли от магнитных и индукционных мин противника. Однако он обеспечивал удовлетворительную защиту лишь в той геомагнитной зоне, в которой производилось размагничивание. В других зонах индуктивное намагничивание изменяется пропорционально изменению вертикальной составляющей магнитного поля Земли, а постоянное намагничивание изменяется медленно, в течение многих месяцев. Под влиянием различных внешних факторов, упругих напряжений, штормовой погоды, глубоководных погружений (для подводных лодок), а также при близких взрывах авиабомб и других сотрясениях постоянное намагничивание во много раз возрастает.

Кроме того, оно зависит и от предыстории, т. е. от того, насколько и каким образом ранее был намагничен корабль. Поэтому результаты изучения влияния этих явлений на изменение магнитных полей кораблей необходимо было строго систематизировать.

Для этой цели в УК ВМФ были разработаны специальные формы протоколов безобмоточного размагничивания и контрольных измерений магнитных полей кораблей, оборудованных размагничивающими устройствами и аппаратурой для их регулировки. Кроме того, были разработаны формы паспортов, выдаваемых кораблям и заполняемых на СБР при проведении каждого очередного размагничивания. Такие документы мы получили от флагманского механика штаба ЧФ 7 октября 1941 г.

Введение протоколов и паспортов размагничивания кораблей существенно облегчало выполнение этого процесса. Оно позволило накопить опыт проведения работ, изучить влияние различных факторов на изменение магнитных полей кораблей и, наконец, имело огромное организующее значение. Кораблям, не прошедшим в установленный срок очередного размагничивания, выход в море не разрешался. И никто на Черноморском флоте не нарушал это положение.

Операция по размагничиванию кораблей, согласно положению, выполнялась тогда, когда корабль уже принял боезапас и все грузы, с которыми он будет плавать, т. е. она была предпоследней (последней было устранение девиации магнитных компасов) при подготовке корабля к походу, и, как правило, на ее выполнение оставалось совсем мало времени. Это приводило к тому, что размагничивание корабля часто приходилось проводить по ночам, при полном затемнении.

В конце сентября 1941 г. по решению штаба ЧФ в районе Троицкой бухты Минно-торпедным отделом ЧФ был оборудован испытательный полигон, где наряду с другими приборами был установлен замыкатель от разоруженной немецкой магнитной мины. Провода от него были выведены на берег, в лабораторию. Появилась возможность не только проверить качество размагничивания кораблей на этом полигоне, но и продемонстрировать это публично. Если корабль был размагничен хорошо, то при прохождении его по стенду над замыкателем никаких сигналов на берегу не возникало, а при неудовлетворительном размагничивании срабатывал замыкатель и на берегу загоралась красная лампа, которая была видна с проверяемого корабля.

Военные моряки вообще, а экипажи кораблей в особенности знали, что магнитные мины для неразмагниченных кораблей представляют страшную угрозу. Свидетельством этому являлись не только сообщения в печати или в соответствующих документах, но и подрывы неразмагниченных кораблей на Черном и Балтийском морях. Поэтому моряки очень серьезно относились к размагничиванию кораблей. Положение обострялось еще и тем, что сами экипажи кораблей внешне не ощущали, насколько качественно размагничен их корабль. Иногда действия «размагнитчиков» моряки называли черной магией. Для экипажа качество размагничивания корабля - это не отвлеченный, абстрактный интерес, а вопрос жизни. Возможно, что определенное влияние на повышение интереса к размагничиванию кораблей оказало и то, что непосредственными руководителями и участниками работ были не привычные заводские инженеры и мастера, а «чистые ученые», физики. Сейчас никого не удивляют совместные работы ученых и инженеров, это считается не только нормальным, но в ряде случаев и наиболее эффективным, а тогда это было еще непривычно.

При проверке качества размагничивания кораблей во время прохождения их по полигону на палубу обычна поднимались все, кто только мог; они хотели видеть своими глазами, загорится ли красная лампа или нет. Если лампа не загоралась, напряжение у людей спадало, настроение поднималось и корабль уходил на позицию. В противном случае он возвращался на СБР для окончательного размагничивания. Такие случаи бывали, но, к счастью, редко.

Первая проверка качества размагничивания подводной лодки С-33 на полигоне была проведена 24 сентября 1941 г. Она была успешной. Затем проверки стали более регулярными, а позже и обязательными.

За время с 25 августа по 30 октября 1941. в Севастополе на СБР-1 было произведено 49 размагничиваний и контрольных измерений кораблей, в основном подводных лодок, а на СБР-2 в Феодосии было размагничено пять подводных лодок.

В связи с тем что для оборудования размагничивающими устройствами даже крупных вспомогательных судов не было ни кабеля, ни производственных возможностей, по предложению сотрудников бригады ЛФТИ некоторые суда, имевшие большие значения продольной курсовой разности магнитного поля, например минный заградитель «Островский», санитарный транспорт «Львов», подвергались комбинированному размагничиванию, при котором вертикальное намагничивание корпуса судна устранялось безобмоточным методом, а поля продольной курсовой разности компенсировались полями временных курсовых обмоток, прокладываемых по верхней палубе в оконечностях корабля.

Необходимо отметить, что ко времени организации СВР весь кадровый офицерский состав и выпускники военно-морских училищ уже служили на штатных должностях, а резерв офицерского состава флотского экипажа состоял или из случайно освободившихся кадровых офицеров, или (в большинстве своем) из офицеров запаса. Из них нам и пришлось комплектовать штаты СВР, а позже и отделения размагничивания кораблей. Среди офицеров запаса мы стремились подбирать инженеров с крупных электротехнических заводов и других предприятий, которые имели хорошую специальную подготовку, большой стаж практической работы в области электротехники и опыт работы с людьми. Как оказалось в дальнейшем, такой подход в условиях того времени был наиболее правильным.

В разное время из экипажа Черноморского флота к нам были назначены Михаил Григорьевич Вайсман - бывший начальник проектно-технического отдела ХЭМЗа, возглавлявший проектирование электрооборудования строящихся кораблей Военно-Морского Флота, автор книги «Корабельная автоматика»; Александр Иванович Боровиков - руководитель группы проектно-технического отдела ХЭМЗа по проектированию электрооборудования подводных лодок; Николай Алексеевич Биятенко, о котором я писал ранее; Михаил Анатольевич Оболенский - руководитель группы проектно-технического отдела ХЭМЗа по проектированию электрооборудования прокатных станов; Леонид Федорович Шибаев - главный энергетик Металлургического завода из Днепропетровска; Юрий Владимирович Исаков - старший инженер проектного института из Харькова; Николай Ильич Сарафанов - старший инженер проектного отдела Электропрома из Одессы и др. Конечно, на первых порах им недоставало специальной военно-морской подготовки. Они не могли самостоятельно управлять кораблем при швартовке, не говоря уже о морских переходах, но это было не главным: для этих целей на СБР первоначально предусматривалась должность судоводителя. Главным было научить их хорошо размагничивать корабли и организовать несение службы в соответствии с корабельным уставом ВМФ.

Опыт работы дальнейших лет показал, что подавляющее большинство из них хорошо изучили морское дело, сдали экзамены и получили документы на право судовождения. Многие из них совершали самостоятельные морские переходы в пределах Черного и Азовского морей.

Здесь я хочу более подробно остановиться на одной из наших совместных с М. Г. Вайсманом разработок того времени - автоматическом регуляторе тока в курсовых обмотках размагничивающих устройств кораблей.

На эскадренных миноносцах типа «Бодрый» и «Сообразительный», лидерах «Харьков» и «Ташкент», крейсерах типа «Ворошилов» и линкоре «Парижская коммуна» размагничивающие устройства, кроме основных обмоток, имели еще и курсовые - для компенсации магнитных полей продольной курсовой разности. Курсовые горизонтальные обмотки включались на определенных курсах корабля, т. е. происходило двухступенчатое, а позже и трехступенчатое реверсивное регулирование тока. Обычно в штурманской рубке корабля устанавливался двухполюсный переключатель, и оттуда в соответствии с курсом корабля вручную нужно было изменять ток в курсовых обмотках. Выполнение этой несложной, но обязательной операции, особенно при маневрировании корабля в море во время налетов вражеской авиации или в миноопасных районах, требовало-выделения специального человека.

Мы с Михаилом Григорьевичем, привыкшие к автоматизации проектируемых корабельных электротехнических и механических устройств, считали необходимым автоматизировать и этот несложный процесс, установив реверсивные двухполюсные контакторы в цепи курсовых обмоток и датчики на репитере гирокомпаса, находящегося здесь же, в штурманской рубке. В то время мы уже знали, что обычные контакты в условиях медленного вращения картушки репитера гирокомпаса, тряски и вибраций на ходу корабля не обеспечат надежной работы, поэтому мы решили установить «лягушечные» контакты.

Помню, это был воскресный теплый малооблачный день. Мы тогда круглосуточно находились на службе (дневали и ночевали в служебных помещениях). Примерно в 15 часов, когда большая часть чертежей мной уже была выполнена (до войны я несколько лет работал старшим конструктором электрических машин на ХЭМЗе), а Михаил Григорьевич составлял описание прибора, вражеская авиация совершила массовый эшелонированный налет на корабли, стоявшие в севастопольских бухтах.

Небо покрывали легкие перистые облака. Высоко между ними были четко видны группы самолетов противника по 9-12 штук. Они летели очень высоко, и огонь нашей зенитной артиллерии был малоэффективен. Тем не менее все средства корабельной и береговой противовоздушной обороны вели интенсивный заградительный огонь, не позволяя им снизиться для прицельного бомбометания или пикирования. Можно было видеть, как сверкали на солнце бомбы в момент отделения от самолетов, был слышен их нарастающий вой и грохот взрывов, при которых с морского дна поднимались столбы воды и ила. Порой эти столбы закрывали от нас находившиеся невдалеке корабли, и мы, затаив дыхание, в страшном волнении ждали, пока спадет столб воды. Каждый думал: увидим ли мы их снова или уже нет? Наше волнение трудно передать словами. Вот снова упала и взорвалась очередная серия бомб. Взметнувшиеся столбы воды и грязи закрыли от нас крейсер «Красный Крым», стоявший на бочках ближе других кораблей. Бесконечно долгими казались секунды, пока спадет пелена. Наконец показался крейсер, он стоял, слегка покачиваясь, без признаков пожара или прямых попаданий авиабомб. Значит, цел!

После нескольких заходов вражеские самолеты были отогнаны нашими истребителями и улетели. На этот раз обошлось без прямых попаданий.

Еще долго стояли мы на причале возле Минной стенки, обсуждая события дня. Это был один из последних случаев, когда мы открыто наблюдали бомбежки. Позже противник стал бросать бомбы и обстреливать из пулеметов людей на причалах.

Наше предложение мы отправили в УК ВМФ. Забегая несколько вперед, скажу, что оно было одобрено. Мы сделали опытный образец, который был испытан комиссией под председательством военного инженера, II ранга Б. И. Калганова. После этого прибор был: установлен на линейном корабле «Парижская коммуна» и эксплуатировался на нем до 1947 г., когда был: заменен новым, более совершенным автоматическим, регулятором тока.

В процессе работы по размагничиванию кораблей выявились особенности работы магнитометров, о которых я уже писал.

Отсутствие приборов для организуемой СБР-3 и преимущества магнитометра «пистоль» побудили нас с М. Г. Вайсманом разработать и изготовить по этому типу магнитометр из отечественных материалов. Речь шла не о приоритете разработки, а об обеспечении работ СБР-3, что в то время было более важным.

Главным элементом этого прибора был металлический поршенек из «мю-металла» с очень высокой магнитной проницаемостью и отсутствием остаточного намагничивания. Из литературы мы знали, что профессором Меськиным был разработан сплав AlSiFe с подобными свойствами.

Был октябрь 1941 г., и в военных условиях изготовление новых деталей из прецизионных магнитных сплавов было задачей не из легких. Однако благодаря отзывчивости наших людей удалось решить на Севастопольском морском заводе и эту задачу. Когда были отлиты заготовки, то оказалось, что по магнитным свойствам они соответствуют нашим требованиям, но обладают крупнозернистым строением, тверды и хрупки. По условиям работы прибора они должны были иметь высокую точность обработки, однако при попытке проточить заготовки на токарном станке оказалось, что их не берет ни один резец, а сами они крошатся. Но и здесь мастера Севморзавода вышли из положения: они обработали их шлифованием. Было изготовлено несколько таких поршеньков.

При изготовлении остальных деталей мы, руководствуясь заводским опытом, стремились не разрабатывать новые узлы или детали, а максимально использовать существующие изделия. Так, в качестве герметичного цилиндра из неферромагнитного материала для датчика прибора была использована гильза от 76-миллиметрового артиллерийского снаряда. Она была укорочена до необходимых размеров, к ней был приварен латунный фланец.

В результате испытаний, проведенных в Поти весной 1942 г., было установлено, что наш прибор почти не уступает английскому. Протокол испытаний был отправлен в УК ВМФ. Главное достоинство его состояло в том, что на месте можно было изготовить из имеющихся материалов необходимое количество магнитометров и обеспечить ими работу СВР.

Совсем недавно, просматривая в Центральном архиве ВМФ документы военных лет, я узнал, что в вопросах разработки и изготовления магнитометров мы не были единственными. Такие же приборы были изготовлены по инициативе службы размагничивания кораблей Тихоокеанского флота в июне 1942 г. в лаборатории магнетизма Института физики металлов Уральского филиала АН СССР в Свердловске под руководством И. К. Кикоина (впоследствии академика).

Из книги Техника и вооружение 2002 03 автора

О классификации автоматического оружия (Продолжение. Начало в "ТиВ"№ 10/2001, 1/2002).I.2. В системах с отдачей ствола затвор во время выстрела прочно сцеплен с подвижным стволом. Под действием отдачи система ствол-затвор начинает движение назад, сжимая пружину затвора и пружину

Из книги Техника и вооружение 2002 05 автора Журнал «Техника и вооружение»

О классификации автоматического оружия (Продолжение. Начало в "ТиВ" № 10/2001, 1,3/2002).1.3. Автоматика с использованием отдачи всего оружия нашла ограниченное применение в индивидуальном оружии - самозарядных винтовках и дробовиках. Ствол неподвижен относительно всего

Из книги Техника и вооружение 2002 09 автора Журнал «Техника и вооружение»

О классификации автоматического оружия (Продолжение. Начало в ТиВ № 10/2001, 1, 3, 5, 7, В/2002). Вариант циклограммы работы автоматики с отдачей ствола с коротким ходом при выстреле с заднего шептала одиночного огня и использовании ускорителя накатаВыше было сказано, что при

Из книги Техника и вооружение 2002 10 автора Журнал «Техника и вооружение»

Из книги «Смерть шпионам!» [Военная контрразведка СМЕРШ в годы Великой Отечественной войны] автора Север Александр

Проверки на дорогах Есть эпизоды в истории Великой Отечественной войны, о которых официальные историки предпочитают не вспоминать. Например, о том, что летом 1941 года только одна Абвергруппа-107 смогла захватить около 20 гербовых печатей штабов различных дивизий, до 40

Из книги Из истории Тихоокеанского флота автора Шугалей Игорь Федорович

Часть 4. ОРГАНИЗАЦИЯ ФИНАНСИРОВАНИЯ СНАБЖЕНИЯ РОССИЙСКИХ ВОЕННЫХ КОРАБЛЕЙ В СЕРЕДИНЕ XIX ВЕКА В настоящее время в отдельную область исторических исследований выделяются специальные исторические дисциплины. Если раньше они играли только вспомогательную роль в

Из книги Размагничивание кораблей Черноморского флота в годы Великой Отечественной войны автора Панченко Виктор Дмитриевич

Налет вражеской авиации на Поти. Организация Отделения размагничивания кораблей 2 июля 1942 г. в Поти около 17 часов я закончил работу на эскадренном миноносце «Бодрый», стоявшем у стенки. Сошел с корабля на берег и стал перечислять старшему мастеру мастерской № 4 Г. И.

Из книги Броненосцы типа «Роял Соверен» автора Феттер А. Ю.

Повышение требований к качеству размагничивания кораблей. Организация новых СБР Работа Отделения размагничивания кораблей ЧФ во второй половине 1943 г. характеризуется значительным увеличением количества обрабатываемых кораблей и возросшими требованиями к качеству

Из книги Все авиа-шедевры Мессершмитта. Взлет и падение Люфтваффе автора Анцелиович Леонид Липманович

Сборы специалистов по размагничиванию кораблей. Дальнейшее совершенствование размагничивающих устройств. Организация СБР-38. Электромагнитный тральщик «Мина». Переход СБР-3 из Батуми в Севастополь Большую роль в становлении службы размагничивания кораблей ВМФ сыграли

Из книги Траектория судьбы автора Калашников Михаил Тимофеевич

Румынский порт Констанца. Немецкая стационарная станция размагничивания кораблей. Итоги месячного траления ЭМБТЩ «Мина». Траление Северной бухты плавучим доком. Необычный способ траления ялтинского фарватера 16 сентября 1944 г. начальник Технического отдела

Из книги Разведчики и шпионы автора Зигуненко Станислав Николаевич

Размагничивание линкора «Севастополь» Вскоре после окончания войны линкор «Севастополь» был поставлен в капитальный ремонт, во время которого намечалось смонтировать новое размагничивающее устройство с прокладкой всех кабелей обмоток внутри корпуса корабля. Проект

Из книги Линейные корабли типа “Куин Элизабет” автора Михайлов Андрей Александрович

Мореходные качества Благодаря длине и обводам, которые были рассчитаны на большую скорость, чем имел низкобортный "Trafalgar", строители допускали, что только 9000 л. с. необходимо для 16 узлов и 13 000 л. с. с форсированной тягой для 17,5. В действительности только "Royal Sovereign" развил эту

Из книги автора

Испанский полигон Гитлер в присутствии Геринга 25 июля 1936 года дал согласие представителю генерала Франко помочь перебросить мятежные войска марокканского корпуса из Северной Африки в Севилью. На следующий день первый из двадцати Ю-52, ведомый резервистами Люфтваффе,

Из книги автора

Из книги автора

Проверки с двух сторон Главную свою задачу Зорге действительно видел в предотвращении войны между Японией и СССР. А для этого прежде всего надо было быть в курсе отношений между Японией и гитлеровской Германией.Какие усилия предпринимались немцами в отношении японцев,

Из книги автора

Приложение № 1 Повреждения линейных кораблей 5-й эскадры в Ютландском бою[* Из книги К.П. Пузыревского. Повреждения кораблей от артиллерии и борьба за живучесть. Ленинград. Судпромгиз. 1940 г.] "Уорспайт". Принадлежал к пятой эскадре линейных кораблей и шел в колонне третьим.В

Александр Сергеевич Суворов

О службе на флоте. Легендарный БПК «Свирепый».

Сводка погоды: Калининград среда 09 августа 1972, дневная температура: мин.: 14.8°C тепла, средняя: 21.0°C тепла, макс.: 28.7°C тепла, без осадков; четверг 10 августа 1972, дневная температура: мин.: 13.8°C тепла, средняя: 19.5°C тепла, макс.: 25.2°C тепла, без осадков; пятница 11 августа 1972, дневная температура: мин.: 16.4°C тепла, средняя: 20.7°C тепла, макс.: 25.7°C тепла, без осадков.

Этап швартовных испытаний БПК "Свирепый" завершился 09 августа 1972 года, когда нас отбуксировали на рейд СБР (стенд безобмоточного размагничивания) Калининградского ПССЗ "Янтарь" (это совсем рядом от места стоянки БПК "Свирепый", "справа за углом" заводской достроечной стенки, напротив нефтеналивной базы на том берегу морского канала - автор).

Размагничивание корабля - это процесс искусственного уменьшения его магнитного поля. Магнитное поле корабля - это физическое поле, то есть область пространства, прилегающая к корпусу корабля, в котором проявляются физические свойства корабля как материального объекта. Основные виды физических полей корабля: гравитационное, акустическое, тепловое (инфракрасное), гидродинамическое, электромагнитное, магнитное и электрическое поле корабля. Физические поля корабля взаимодействуют с соответствующим физическим полем Мирового океана и прилегающего воздушного пространства, поэтому оставляют след и могут быть обнаружены на расстоянии чуткими приборами.

Размагничивание производят с помощью обмоток контуров, питаемых током, и называют электромагнитной обработкой (ЭМО) корабля, при этом создаётся определённым образом магнитное поле, обратное по знаку магнитному полю корабля. Зависимость направления магнитного поля, то есть положения его полюсов от направления тока определяется известным правилом "буравчика". Размагничивание производится двумя различными методами – безобмоточным и обмоточным, но эти названия условные, так как размагничивание кораблей как одним, так и другим методом выполняют с помощью обмоток, питаемых током. Правда, в первом случае, обмотки накладывают на корпус судна временно, лишь на период размагничивания, или же вообще располагают вне судна, а по второму способу размагничивания обмотки устанавливают стационарно в корпусе корабля при его изготовлении и включают их на время следования по опасным районам.

Безобмоточное размагничивание (БР) осуществляется путём воздействия на корабль временно создаваемых магнитных полей двумя способами: с помощью временно накладываемых на корабль электрических обмоток и с помощью контуров, обтекаемых током, уложенных на грунте, на дне специальных акваторий - полигонов БР. При безобмоточном размагничивании (БР) корпус корабля подвергается воздействию затухающего переменного и постоянного магнитных полей, либо кратковременному воздействию только постоянного магнитного поля.

Когда изготавливали БПК "Свирепый", то его металлический (стальной) корпус неизбежно намагничивался, приобретал свои собственные физические поля, причём, в вертикальном, продольном и поперечном направлении, поэтому и размагничивать его нужно в этих же направлениях. При продольном размагничивании весь корпус корабля параллельно ватерлинии окружается кабелем, по которому пропускается ток такой величины, чтобы созданное электромагнитное поле обратного знака превышало собственное магнитное поле корпуса корабля в 2-3 раза. Через несколько секунд ток в обмотке выключается и происходит «опрокидывание» магнитного поля корабля. После этого проводится "операция компенсации", то есть опять в обмотку включается ток, величина и направление которого выбираются так, чтобы после выключения его магнитное поле корабля возможно больше приближалось к нулю. Таким образом, магнитное поле корабля не будет воздействовать на детонаторы вражеских магнитных мин и магнитных торпед...

Для создания как постоянного, так и переменного магнитных полей на корабль накладываются временно один или несколько витков кабелей, подключаемых к источникам питания специальных судов размагничивания. При продольном размагничивании корабль по всей длине обматывается несколькими витками кабелей, как катушка, и корабль оказывается заключенным внутри огромного соленоида. При подачи тока в эту обмотку-селеноид возникает объёмное магнитное поле, действующее по оси соленоида, которое размагничивает корабль. При поперечном размагничивании на корабль накладываются в вертикальной плоскости два последовательно соединенных витка кабелей по бортам. В результате по всем направлениям добиваются нулевых значений измерений магнитного поля корабля.

Заводить и обматывать корабль вдоль и вокруг корпуса тяжелыми многожильными медными кабелями в толстой изоляции - это очень тяжёлый труд, на который уходит много сил и времени, но это крайне необходимо, так как обеспечивает безопасность кораблю и точность навигации - определения местоположения корабля в окружающем пространстве Земли. Поэтому одновременно с обмоткой корабля кабелем осуществляется безобмоточное размагничивание на специальной станции, на которой обмотки (кабель) уложены определённым образом на грунте акватории завода-изготовителя корабля.

Контуры кабелей СБР (станции безобмоточного размагничивания), уложенные на грунте, имеют форму петли. Поэтому такие станции ещё называют "петлевые станции безобмоточного размагничивания" (ПСБР). Акватория ПСБР ограждается буями или вехами и здесь имеются бочки для швартовки кораблей и судов. Через первый контур пропускают постоянный ток, а через второй - переменный ток частотой 1 Гц. Переменное магнитное поле устраняет все необратимые явления, возникающие при намагничивании в постоянном магнитном поле контура постоянного тока. Размагничивания на ПСБР осуществляется путём пропускания соответствующих токов по контурам (донным кабелям) в тот момент, когда корабль стоит над ними. Управление режимом тока и снятие показаний магнитометрической аппаратуры осуществляется дистанционно с берегового пульта.

Данный вид размагничивания БПК "Свирепый" получит в декабре 1972 года в уникальном месте - на I Полигоне ВМФ СССР в заливе Хара-Лахт (посёлке Суурпеа Эстонской ССР) на уникальных стендах:
- ИК-2М для магнитной обработки кораблей;
- база «Ока» - подъемно-опускное устройство для измерения гидроакустического поля;
- стенд «Пилон» - 28-метровая ферма, размещенная под водой, с установленными на ней датчиками гидродинамического давления и датчиками, определяющими гидрологию моря;
- глубоководный гидроакустический стенд, удаленный от основной акватории полигона на 80 км и т. д.

В четверг 10 августа 1972 года экипажу БПК "Свирепый" предложили сложить в коробки все свои наручные часы, мы, штурманцы БЧ-1, сняли все корабельные часы со всех переборок во всех помещениях и всё это унесли под охраной на берег. Перед этим, в среду, воспользовавшись хорошей ясной погодой, корабль был полностью обмотан кабелями для размагничивания, и особо храбрые матросы остались на корабле "загорать в сильном магнитном поле", чтобы получить либо "заряд сексуальной бодрости", либо "сексуальное успокоение". Процесс размагничивания БПК "Свирепый" шёл по принципу " гистерезисного или полугистерезисного перемагничивания" и эти слова действовали на моряков завораживающе, магически, магнетически. Некоторые утверждали, что ощутили прилив сил и "мужской энергии".

На самом деле электромагнитное поле безобмоточного размагничивания действует только на корпус корабля, при этом не компенсируются курсовые и широтные изменения поля корабля, поэтому возникает необходимость периодически повторять магнитную обработку ввиду недостаточной стабильности результирующего поля и после каждого размагничивания необходимо производить определение и устранение девиации (погрешности) магнитных компасов. Так что нам, штурманам, забот и хлопот 09-10 августа 1972 года хватало...

Кроме этого лично мне пришлось участвовать в так называемом "обмоточном размагничивании", то есть в производстве компенсации магнитных полей корабля полями от стационарных обмоток, питаемых током от специальных источников. Совокупность системы обмоток, источников питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ) корабля. РУ создаёт магнитное поле в любой момент времени как "зеркальное отображение" собственного магнитного поля корабля, при этом в каждой точке под кораблем создаваемое магнитное поле равно полю корабля по величине, но противоположно по знаку. Таким образом, результирующее магнитное поле имеет почти нулевые значения (корабль становится почти "невидимым" для магнитных мин - автор). Кстати впервые РУ разработаны ещё во время Великой Отечественной войны 1941-1945 годов группой сотрудников ЛФТИ АН СССР во главе с академиком А. П. Александровым (И. В. Курчатов, Л. Р. Степанов К. К. Щербо и др.). Размагничивающее устройство (РУ) позволяет компенсировать магнитное поле корабля с учетом курсовых и широтных изменений.

Обмотки РУ установлены внутри корабля в продольном, поперечном и вертикальном направлениях, а направление тока в обмотках подбирают так, чтобы магнитное поле было противоположно собственному полю корабля полю в этих направлениях. Вот эти-то обмотки, спрятанные в специальных кожухах внутри помещений в носу и в корме, по расположению шпангоутов и по бортам (батоксовые постоянные обмотки) я и проверял. Для компенсации разнонаправленного магнитного поля достаточно задать в обмотках определенный и одинаковый режим тока, но сложнее компенсировать индуктивные составляющие намагничивания. Для компенсации этих составляющих магнитного поля корабля в РУ (размагничивающее устройство) входят регулируемые обмотки: широтная, курсовые шпангоутные обмотки и батоксовые курсовые обмотки.

РУ обмоточного размагничивания требует много энергии, стоит больших средств и усилий для создания, дефицитных материалов, но обеспечивает большую степень защиты кораблей от неконтактного магнитного оружия и большую скрытность корабля в физических полях Мирового океана.

Таким образом, - рассказывал я ребятам во время посещения боевых постов и внутренних помещений для ревизии обмоток корабельного РУ (размагничивающего устройства), - за этими металлическими кожухами располагаются простые молчаливые толстые медные кабели, защищающие нас от магнитных мин и торпед, делающие нас невидимыми в магнитных полях, дающие возможность точно определять наше местоположение, местоположение (координаты) целей, а значит точнее стрелять, поразить врага и остаться живыми. Берегите эти защитные кожухи и берегите аппаратуру РУ, потому что они здесь не просто так, для красоты или помехи, а для самозащиты корабля, то есть нас всех.

Я честно "не травил военно-морскую байку о РУ" (размагничивающем устройстве), я говорил правду. Практически все матросы и старшины, годки, подгодки и молодые матросы с уважением и со вниманием смотрели на то, что я делал и слушали, что я говорил им обычным усталым и деловым тоном. Все отнеслись к размагничиванию нашего корабля с пониманием, вот почему участие нашего экипажа в укладке и обмотке корпуса корабля тяжеленными и маркими кабелями все мы восприняли, как аврал, как состязание, как своеобразный героизм. В этой авральной работе участвовали буквально все: офицеры, мичманы, годки, подгодки, молодые, прикомандированные и вновь прибывшие "салаги". Это было наше последнее "дело" в Программе швартовных испытаний перед получением первого в истории БПК "Свирепый" Военно-Морского флага, открывающего нам путь в море...

Ещё в середине июля 1972 года специальная комиссия представителей всех сдатчиков, военпредов и заказчиков от ВМФ определилась с датой выхода на заводские ходовые испытания БПК «Свирепый» - 12-13 августа 1972 года, на этот срок была назначена дата подъёма на корабле Военно-Морского флага.

В период с 09-11.08.1972 года БПК «Свирепый» проходил первое безобмоточное размагничивание на заводском рейде СБР, которое обеспечивало судно размагничивания Балтийского флота (возможно, СР-570 – автор). Под руководством опытных работников и матросов специального судна СР-570, мы разматывали с огромных катушек специальные тяжёлые кабель-тросы в чёрной липкой и маркой резиновой изоляции, цепляли их, наращивая длину, и заводили под корпусом нашего корабля, поднимая эти кабель-тросы на надстройки и даже на нашу фок-мачту и реи. В результате, корпус корабля оказался полностью обмотан кабель-тросами и превратился в сердечник электромагнита - селеноида.

На БПК «Свирепом» ещё не совсем закончились разные работы по доводке машин и механизмов, установка новых приборов, поэтому на корабле присутствовали многочисленные специалисты разных заводов, приехали из Ленинграда конструкторы и проектанты корабля, инженеры-наладчики и учёные из военных институтов. Все были в хорошем праздничном настроении и восприняли время, предназначенное для размагничивания корабля (в течение нескольких дней), как своеобразный «отпуск». Матросы экипажа БПК «Свирепый» тоже, невзирая на невидимые магнитные поля, с удовольствием загорали на «крыше» ГКП и ходовой рубки во время проведения работ по размагничиванию, что и подтверждает фотоиллюстрация из ДМБовского альбома радиотелеграфиста Казённова Юрия Васильевича, период его службы 16.11.1970 - 11.1973. На переднем плане снимка Червяков Александр Николаевич, период службы 19.11.1970 - 11.1973, за ним с чапаевскими усами командир отделения механиков БП ЗАС Морозов Николай Николаевич, период службы 19.11.1970 - 11.1973, а за ним возвышается радиотелеграфист Аносов Борис Алексеевич, период службы 16.11.1970-11.1973 (все из БЧ-4). По бокам от ребят видны двойные кабель-тросы для размагничивания.

Обмоточное размагничивание БПК «Свирепый» на заводском стенде СБР с помощью специального судна, возможно, СР-570, было последним событием перед первым торжественным подъёмом Военно-Морского флага ВМФ СССР, потому что 10 августа 1972 года Командующий Балтийским флотом, адмирал В.В. Михайлин издал приказ №0432 о зачислении новостроящегося БПК «Свирепый» в списки боевых надводных кораблей Дважды Краснознамённого Балтийского флота.

Что значило для нас, экипажа БПК «Свирепый», издание командующим Балтийским флотом такого приказа и поднятие Военно-морского флага? Первое, - это, конечно, гордость за то, что мы досрочно справились с большими задачами, приняли и первично освоили корабль, подготовились к заводским ходовым испытаниям. Второе, - это повышение денежного содержания и норм питания с «сухопутных» (общевойсковых норм), до «морских» (флотских). Третье, - начало настоящих морских испытаний и приключений, потому что наш корабль должен был впервые дать ход, пройти узостями по калининградскому Морскому каналу из акватории родного Калининградского Прибалтийского судостроительного завода «Янтарь» в Балтийскую военно-морскую базу Балтийск и встать там к причальной стенке – на своё законное место.

Фотоиллюстрация из ДМБовского альбома Юрия Казённова: 10 августа 1972 года. Калининград. Калининградский Прибалтийский судостроительный завод "Янтарь". Заводской рейд СБР, где в период с 09 по 11 августа 1972 года БПК «Свирепый» проходил безобмоточное размагничивание. На переднем плане снимка радиотелеграфист Червяков Александр Николаевич, период службы 19.11.1970-11.1973, за ним с чапаевскими усами командир отделения механиков БП ЗАС Морозов Николай Николаевич, период службы 19.11.1970 - 11.1973, а за ним возвышается радиотелеграфист Аносов Борис Алексеевич, период службы 16.11.1970 - 11.1973 (все из БЧ-4). По бокам от ребят видны двойные кабель-тросы обмотки размагничивания. Сверху на фоне берега виден корабельный измеритель ветра (КИВ) – моё (автора) заведование как рулевого БЧ-1.
В новелле использованы данные из статьи авторов Зингер М.А., Захаров И.В. Применение инновационных технологий в военном кораблестроении // Актуальные вопросы технических наук: материалы IV Междунар. науч. конф. (г. Краснодар, февраль 2017 г.). - Краснодар: Новация, 2017. - С. 13-17.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Соде р жание

Введение

1. Понятие о конструктивной защите и физических полях корабля

2. Основные физические поля корабля и способы их снижения

3. Размагничивающее устройство корабля

Заключение

Введение

физический поле корабль

В целях более успешного решения кораблем своих боевых задач в условиях интенсивного развития средств обнаружения и поражения, необходимо всему офицерскому составу знать физические поля корабля и Мирового океана, способы обеспечения физической защиты, уметь грамотно использовать технические средства защиты и режимы движения корабля, а также необходимо обратить серьезное внимание на выбор грамотных тактических приемов для обеспечения скрытности корабля и уменьшения вероятности обнаружения и поражения неконтактным оружием.

При проектировании и постройке кораблей различных классов уделяется большое внимание обеспечению их конструктивной защиты от воздействия различных видов оружия и средств наведения.

1. Понятие о конструктивной защите и физических полях к о рабля

С началом ведения боевых действий на море началось противостояние оружия, применяемого для уничтожения кораблей и защиты корабля от этого оружия.

Так в период, когда основным оружием был таран начали применять бронирование бортов корабля. С началом применения артиллерии значительное внимание наряду с бронированием уделялось пожарозащищенности кораблей. В этот период появились первые противопожарные системы.

Бронирование кораблей, как основной вид защиты широко применялся на кораблях вплоть до начала 20 века. В этот период существовал класс броненосных кораблей - броненосцев. Кроме того, другие корабли строились также с применением бронирования. Представителем этих кораблей является знаменитый крейсер "АВРОРА" построенный в этот период. Корпус данного корабля состоит из двух частей: тяжелой бронированной подводной части и легкой надводной.

С увеличением мощи артиллерийского оружия и появлением торпедного оружия бронирование перестало удовлетворять требованиям защиты корабля. Поэтому применение бронирования стало не целесообразным.

В этот период начинается бурное развитие основных положений живучести корабля, основоположником которых стал русский офицер, адмирал С.О. Макаров.

Применение принципа разделения корабля на герметичные, водонепроницаемые отсеки, широкое использование водоотливных и противопожарных средств, аварийно-спасательного имущества и материалов, а также научные подходы к организации борьбы за живучесть корабля, все это позволило кораблю эффективно противостоять боевому воздействию оружия того времени.

С началом применения неконтактных взрывателей и возникновением систем самонаведения основным направлением защиты кораблей стала защита по физическим полям. Данный вид защиты в настоящее время продолжает развиваться и совершенствоваться, а с появлением мощного ракетного оружия необходимость обеспечения защиты корабля еще более возросла.

На современных кораблях конструктивная защита обеспечивается проведением следующих мероприятий:

Придание кораблю необходимых запасов местной и общей прочности;

Деление корабля на водонепроницаемые отсеки;

Применение технических средств борьбы с водой и пожарами;

Обеспечение снижения уровня различных физических полей.

В настоящее время для обнаружения кораблей, их классификации, слежения за ними, а также их уничтожения используются различные неконтактные системы, основанные на принципах регистрации различных физических полей корабля. С началом применения неконтактных взрывателей и возникновением систем самонаведения основным направлением защиты кораблей стала защита по физическим полям.

Физическим полем называется часть пространства или все пространство, которому присущи некоторые физические свойства. В каждой точке этого пространства некоторая физическая величина имеет определенное значение.

К полям, как своеобразным формам материи можно отнести магнитное, тепловое (инфракрасное), световое, гравитационное и другие поля.

Некоторые физические поля являются своеобразными формами движения вещества, как, например акустическое поле. А некоторые поля проявляются в виде электромагнитных и гравитационных явлений в совокупности с движением вещества, как, например гидродинамическое поле.

Каждому месту Мирового океана присущи определенные уровни физических полей - это естественные природные поля. В зависимости от среды в которой зарождаются физические поля океана, их можно разделить на:

1. Геофизические поля , обусловленные наличием всей массы земли:

Магнитное поле;

Гравитационное поле;

Электрическое поле; поле рельефа океана.

2. Гидрофизические поля , обусловленные наличием водных масс океана, к которым относятся:

Поле температуры морской воды;

Поле солености морской воды;

Поле радиоактивности морской воды;

Гидродинамическое поле;

Гидроакустическое поле;

Гидрооптическое поле;

поле теплового излучения поверхности океана.

При создании технических средств обнаружения кораблей и неконтактных систем оружия тщательно учитываются характеристики и параметры полей океана, они рассматриваются как естественная помеха, с учетом которой средства должны быть настроены так, чтобы выделить на фоне естественной помехи физическое поле корабля. С другой стороны, корабли могут использовать поля океана в целях маскировки или уменьшения уровней собственных полей.

Корабль (ПЛ) при нахождении в данном месте мирового океана вносит изменения в естественные поля. Он искажает (возмущает) то или иное поле Мирового океана с определенной закономерностью и сам в некоторых случаях подвергается воздействию физических полей, например, намагничивается.

Физическим полем корабля называется область пространства, прилегающая к кораблю, в пределах которой обнаруживается искажение соответствующего поля Мирового океана.

Надводный корабль является источником различных физических полей, которые являются характеристиками корабля, определяющими его скрытность, защиту и боевую устойчивость.

Параметры физических полей широко используются при обнаружении и классификации кораблей, в системах наведения оружия, а также в системах управления неконтактным минно-торпедным и ракетным оружием.

В настоящее время еще не установлена строгая классификация и терминология по физическим полям и следности корабля. Одним из вариантов является классификация, представленная на таблице №1.

Физические поля кораблей по месту расположения источников поля подразделяют на первичные (собственные) и вторичные (вызванные).

Первичными (собственными) полями кораблей называются поля, источники которых расположены непосредственно на корабле либо в сравнительно тонком слое воды, прилегающем к его корпусу.

Вторичным (вызванным), полем корабля, называется отраженное (искаженное) поле корабля, источники которого находятся вне корабля (в пространстве, на другом корабле и т.д.).

Поля, которые создаются искусственно с помощью специальных устройств, (радио-, гидролокационных станций, оптических приборов) называются активными физическими пол я ми.

Поля, которые создаются естественно кораблем в целом как конструктивным сооружением, называются пассивными физическими полями корабля .

По функциональной зависимости параметров физических полей от времени их можно подразделить на статические и динамические.

Статическими полями являются такие физические поля, интенсивность (уровень или мощность) источников которых остается в течении времени воздействия полей на неконтактную систему постоянной.

Динамическими (переменными во времени) физическими полями называются такие поля, интенсивность источников которых изменяется в течении времени воздействия поля на неконтактную систему.

Физические поля корабля в настоящее время широко используются по трем направлениям:

В неконтактных системах различных видов оружия;

В системах обнаружения и классификации;

В системах самонаведения.

Степень использования физических полей в технических средствах обнаружения, слежения за кораблями и в неконтактных системах оружия неодинакова. В настоящее время нашли широкое применение в практике следующие физические поля корабля:

акустическое поле,

тепловое (инфракрасное) поле,

гидродинамическое поле,

магнитное поле,

электрическое поле.

Причины возникновения и способы снижения этих физических полей корабля рассмотрим в следующих вопросах занятия.

2. Основные физические поля корабля и способы их сн и жения

а) Акустическое поле корабля.

Акустическим полем корабля называется область пространства, в которой распределяются акустические волны, образованные или собственно кораблем или отражающиеся от корабля.

Волнообразно распространяющееся колебательное движение частиц упругой среды принято называть звуком.

Скорость распространения звука зависит от упругих свойств среды (в воздухе 330 м/сек, в воде 1500 м/сек, в стали около 5000 м/сек). Скорость распространения звука в воде зависит, кроме того, от ее физического состояния, увеличиваясь с повышением температуры, солености и гидростатического давления.

Движущийся корабль является мощным источником звука, создающим в воде акустическое поле большой интенсивности. Это поле называют гидроакустическим полем корабля (ГАПК).

В соответствии с классификацией, рассмотренной ранее, ГАПК подразделяется на:

Первичное ГАПК (шумность), которое формируется кораблем собственным источником акустических волн;

Вторичное ГАПК (гидролакационное), которое формируется в следствии отражающихся от корабля акустических волн, излучаемых посторонним источником.

Гидроакустическое поле (шумность) корабля широко используется в стационарных, корабельных и авиационных системах обнаружения и классификации, а также системах самонаведения и неконтактных взрывателях минно-торпедного оружия.

Гидроакустическое поле корабля представляет собой совокупность наложенных друг на друга полей, создаваемых различными источниками, основными из которых являются:

Шумы, создаваемые движителями (винтами) при их вращении. Подводный шум корабля от работ гребных винтов разделяется на следующие составляющие:

Шум вращение гребного винта,

Вихревой шум,

Шум вибрации кромок лопастей винтов («пение»),

Кавитационный шум.

Шумы, излучаемые корпусом корабля на ходу и на стоянке как результат его вибрации от работы механизмов.

Шумы, создаваемые обтеканием корпуса корабля водой при его движении.

Уровни подводного шума зависят от скорости хода корабля и от глубины погружения (для ПЛ). На скоростях хода выше критической начинается область интенсивного шумообразования.

В процессе эксплуатации корабля шумность его по ряду причин может измениться. Так увеличению шумности способствует выработка технического ресурса корабельных механизмов, что приводит к их расцентровки, расбалансировки и увеличению вибрации. Колебательная энергия механизмов вызывает вибрации корпуса, что приводит к возмущениям в забортной среде, определяющим подводный шум.

Вибрации механизмов передаются на корпус:

Через опорные связи механизмов с корпусом (фундаменты);

Через неопорные связи механизмов с корпусом (трубопроводы, водопроводы, кабели);

Через воздух в отсеках и помещениях НК.

Насосы, связанные с забортной средой, передают колебательную энергию кроме указанных путей по рабочей среде трубопровода непосредственно в воду.

Шумность корабля характеризует не только его скрытность от гидроакустических средств обнаружения и степень защиты от минно-торпедного оружия вероятного противника, но и определяет условия работы собственных гидроакустических средств обнаружения и целеуказания, создавая помехи работе этих средств.

Шумность имеет большое значение для подводных лодок (ПЛ) так как она во многом определяет их скрытность. Контроль за шумностью и ее снижение является важнейшей задачей всего личного состава корабля и особенно ПЛ.

В целях обеспечения акустической защиты корабля проводится ряд организационно-технических и тактических мероприятий.

К данным мероприятиям относятся следующие:

улучшение виброакустических характеристик механизмов;

удаление механизмов от конструкций наружного корпуса, излучающего подводный шум, путём их установки на палубы, платформы и переборки;

виброизоляция механизмов и систем от основного корпуса с помощью звукоизолирующих амортизаторов, гибких вставок, муфт, амортизирующих подвесок трубопроводов и специальных шумозащищающих фундаментов;

вибропоглащение и звукоизоляция звуковых вибраций фундаментных и корпусных конструкций, систем трубопроводов с помощью звукоизолирующих и вибродемфирующих покрытий;

звукоизоляция и звукопоглащение воздушного шума механизмов за счет применения покрытий, кожухов, экранов, глушителей в воздуховодах;

применение в системах забортной воды глушителей гидродинамического шума.

Кавитационный шум снижается выполнением следующих мероприятий:

применение малошумных гребных винтов;

применение низкооборотных винтов;

увеличение числа лопастей;

балансировка гребного винта и линии вала.

Совокупность конструктивных мероприятий и действий личного состава направленных на снижение шумности, позволяют в значительной степени снизить уровень гидроакустического поля корабля.

б) Тепловое поле корабля.

Основными источниками теплового поля корабля (инфракрасного излучения) являются:

Поверхности надводной части корпуса, надстроек, палуб, кожухов дымовых труб;

Поверхности газоходов и газовыхлопных устройств отработавших газов;

Газовый факел;

Поверхности корабельных конструкций (мачт, антенн, палуб и т.д.), находящихся в зоне действия газового факела, газовых струй ракет и летательных аппаратов при запуске;

Бурун и кильваторный след корабля.

Обнаружение надводных кораблей и подводных лодок по их тепловому полю, и выдача целеуказания оружию производится с помощью теплопеленгаторной аппаратуры. Такая аппаратура устанавливается на самолетах, спутниках, надводных кораблях и подводных лодках, береговых постах.

Тепловыми (инфракрасными) устройствами самонаведения снабжаются также различные типы ракет и торпеды. Современные тепловые устройства самонаведения обеспечивают захват целей на расстоянии до 30 км.

Наиболее эффективным способом снижения теплового поля корабля является применение технических средств тепловой защиты.

К техническим средствам тепловой защиты относятся:

охладители отработавших газов корабельной энергетической установки (камера смешения, внешний кожух, жалюзийные окна приёма воздуха, насадки, системы водовпрыска и т.д.);

теплоутилизационные контуры (ТУК) корабельной энергетической установки;

бортовые (надводные и подводные) и кормовые газовыхлопные устройства;

экраны инфракрасного излучения от внутренних и наружных поверхностей газоходов (двухслойные экраны, профильные экраны с водяным или воздушным охлаждением, экранирующие тела и т.д.);

система универсальной водяной защиты;

покрытия для корпуса и надстроек корабля, в том числе и лакокрасочные, с пониженной излучающей способностью;

тепловая изоляция высокотемпературных корабельных помещений.

Тепловую заметность надводного корабля можно также уменьшить применением тактических приемов. К таким приемам относятся следующие:

использование маскирующего воздействия тумана, дождя и снега;

использование в качестве фона предметов и явлений с мощным инфракрасным излучением;

использование носовых курсовых углов по отношению к носителю теплопеленгаторной аппаратуры.

Тепловая заметность подводных лодок уменьшается при увеличении глубины их погружения.

в) Гидродинамическое поле корабля.

Гидродинамическим полем корабля (ГПК) называется область пространства, прилегающая к кораблю, в которой наблюдается изменение гидростатического давления, вызываемое движением корабля.

По физической сущности ГПК это возмущение движущимся кораблем естественного гидродинамического поля Мирового океана.

Если в каждом месте Мирового океана параметры его гидродинамического поля обусловлены в наибольшей степени случайными явлениями, учесть которые заранее очень трудно, то движущийся корабль вносит не случайные, а вполне закономерные изменения в эти параметры, учесть которые можно с необходимой для практики точностью.

При движении корабля в воде частицы жидкости, расположенные на определенных расстояниях от его корпуса, приходят в состояние возмущенного движения. При движении этих частиц меняется величина гидростатического давления в месте движения корабля, образуется гидродинамическое поле корабля определенных параметров.

При движении ПЛ под водой область изменения давления распространяется на поверхность воды так же, как и на грунт. Если движение осуществляется на небольших глубинах погружения, то на поверхности воды появляется визуально хорошо заметный волновой гидродинамический след.

Таким образом, гидродинамическое поле корабля создается при его движении относительно окружающей жидкости и зависит от водоизмещения, главных размерений, формы корпуса, скорости корабля, а также от глубины моря (расстояние до днища корабля).

Гидродинамическое поле корабля (ГПК) широко используется в неконтактных гидродинамических взрывателях донных мин.

Обеспечить гидродинамическую защиту корабля любого типа или существенным образом снизить параметры ГПК с помощью конструктивных средств очень трудно. Для этого необходимо создавать сложную форму корпуса, что приведет к увеличению сопротивления движению. Поэтому решение вопроса гидродинамической защиты осуществляется в основном организационными мероприятиями.

Для обеспечения гидродинамической защиты любого корабля необходимо и достаточно, чтобы параметры его ГПК по величине не превосходили параметров настройки неконтактного гидродинамического взрывателя.

Уровни гидродинамического поля уменьшаются при уменьшении скорости корабля. Снижение скорости корабля до безопасной является основным способом защиты кораблей от гидродинамических мин.

Графики безопасных скоростей корабля и правила пользования ими даются в инструкции по выбору безопасных скоростей корабля при плавании в районах возможной постановки гидродинамических мин.

Наряду с эксплуатационными физическими полями корабля, существуют также поля зависящие практически только от физических и химических свойств материалов из которых построен корабль. К таким физическим полям корабля относятся магнитное и электрическое поле.

г) Электрическое поле корабля.

Следующим физическим полем корабля является электрическое поле. Из курса физики известно, что если в какой-либо точке пространства появляется электрический заряд, то вокруг этого заряда возникает электрическое поле.

Электрическим полем корабля (ЭПК) называют область пространства, в которой протекают постоянные электрические токи.

Основными причинами образования электрического поля корабля являются:

1. Электрохимические процессы между деталями, изготовленными из разнородных металлов и находящимися в подводной части корабля (гребные винты и валы, рулевые устройства, донно-забортная арматура, системы протекторной и катодной защиты корпуса и т.д.).

2. Процессы, обусловленные явлением электромагнитной индукции, которые заключаются в том, что корпус корабля при своем движении пересекает силовые линии магнитного поля Земли, в результате чего в корпусе корабля и близлежащих массах воды возникают электрические токи. Аналогично такие токи появляются в корабельных винтах при их вращении в МПЗ и МПК.

3. Процессы, связанные с утечкой токов корабельного электрооборудования на корпус корабля и в воду.

Основной причиной образования ЭПК являются электрохимические процессы между разнородными металлами. Около 99 % от максимальной величины ЭПК приходится именно на электрохимические процессы. Поэтому для снижения уровня ЭПК стремятся устранить эту причину.

Электрическое поле корабля значительно превосходит естественное электрическое поле Мирового океана, что позволяет использовать его для создания неконтактного морского оружия и средств обнаружения подводных лодок.

С целью снижения электрического поля корабля проводится ряд мероприятий, основными из которых являются следующие:

Применение неметаллических материалов для изготовления корпуса и деталей, омываемых морской водой;

Подбор металлов по близости значений их электродных потенциалов для корпуса и деталей, омываемых морской водой;

Экранирование источников ЭПК;

Разъединение внутренней электрической цепи источников ЭПК;

Покрытие источников ЭПК электроизолирующими материалами.

г ) Магнитное поле корабля.

Магнитным полем корабля (МПК) называется область пространства, в котором естественное магнитное поле Земли искажено из-за присутствия или движения корабля, намагниченного в поле земли.

Магнитное поле корабля (МПК) широко используется в неконтактных взрывателях минно-торпедного оружия, а также в стационарных и авиационных системах магнитометрического обнаружения ПЛ.

Причины возникновения магнитного поля корабля заключаются в следующем. Любое вещество всегда магнитно, т.е. изменяет свои свойства в магнитном поле, но степень изменения свойств, для различных веществ не одинакова.

Различают слабомагнитные вещества, (например алюминий, медь, титан, вода), и сильномагнитные, (такие как железо, никель, кобальт и некоторые сплавы). Вещества, способные сильно намагничиваться, получили название ферромагнетиков.

Для количественной характеристики магнитного поля служит специальная физическая величина - напряженность магнитного поля Н .

Другой важной физической величиной, характеризующей в первую очередь магнитные свойства материала является интенсивность намагничивания I . Кроме того существуют понятия остаточного намагничивания и индуктивного н а магничивания.

Остаточным намагничиванием называется постоянное намагничивание корабля, которое сохраняется на достаточно длительный промежуток времени неизменным при изменении или отсутствии МПЗ.

Индуктивным намагничиванием корабля называется величина, которая непрерывно и пропорционально изменяется при изменении МПЗ.

Корабль, корпус которого построен из ферромагнитного материала, или имеющий другие ферромагнитные массы (главные двигатели, котлы, и т.д.) находясь в магнитном поле Земли намагничивается, т.е. приобретает собственное магнитное поле.

Магнитное поле корабля в основном зависит от магнитных свойств материалов, из которых построен корабль, технологии постройки, размеров и распределения ферромагнитных масс, места постройки и районов плавания, курса, качки и некоторых других факторов.

Способы снижения магнитного поля корабля рассмотрим более подробно в следующем вопросе занятия.

3. Размагничивающее устройство кора б ля

Задача снижения магнитного поля корабля может решаться двумя путями:

применение в конструкции корпуса, оборудования и механизмов корабля маломагнитных материалов;

проведение размагничивания корабля.

Применения маломагнитных и немагнитных материалов для создания корабельных конструкций позволяет в значительной степени снизить магнитное поле корабля. Поэтому при строительстве специальных кораблей (тральщиков, минных заградителей) широко используются такие материалы как стеклопластик, пластмассы, алюминиевые сплавы и т.д. При строительстве некоторых проектов атомных подводных лодок применяется титан и его сплавы, который наряду с высокой прочностью является маломагнитным материалом.

Однако прочность и другие механические и экономические показатели маломагнитных материалов позволяют применять их при строительстве боевых кораблей в ограниченных пределах.

Кроме того, если даже корпусные конструкции кораблей выполнять из маломагнитных материалов, то целый ряд корабельных механизмов остается выполненным из ферромагнитных металлов, которые также создают магнитное поле. Поэтому в настоящее время основным способом магнитной защиты большинства кораблей является их размагничивание.

Размагничиванием корабля называется комплекс мероприятий направленных на искусственное уменьшение составляющих напряженности его магнитного поля.

Основными задачами размагничивания являются:

а) уменьшение всех составляющих напряженности МПК до пределов, установленных специальными нормами;

б) обеспечение стабильности размагниченного состояния корабля.

Одним из методов решения этих задач является проведение обмоточного размагничивания.

Сущность метода обмоточного размагничивания заключается в том, что МПК компенсируется магнитным полем тока специально смонтированных на корабле штатных обмоток.

Совокупность системы обмоток, источников их питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ) корабля.

В систему обмоток РУ корабля могут входить следующие обмотки (в зависимости от типа и класса корабля):

а) Основная горизонтальная обмотка (ОГ), предназначенная для компенсации вертикальной составляющей МПК. Для размагничивания большей массы ферромагнитного материала корпуса ОГ разбивается на ярусы, при этом каждый ярус состоит из нескольких секций.

б) Курсовая шпангоутная обмотка (КШ), предназначенная для компенсации продольного индуктивного намагничивания корабля. Она состоит из ряда последовательно соединенных витков, расположенных в шпангоутных плоскостях.

а) Основная горизонтальная обмотка ОГ.

б) Курсовая шпангоутная обмотка КШ.

в) Курсовая батоксовая обмотка КБ.

в) Курсовая батоксовая обмотка (КБ), предназначенная для компенсации поля индуктивного поперечного намагничивания корабля. Она монтируется в виде нескольких контуров, расположенных побортно в батоксовых плоскостях, симметрично относительно диаметральной плоскости корабля.

г) Постоянные обмотки, применяются на кораблях большого водоизмещения. К этим видам обмоток относятся постоянная шпангоутная обмотка (ПШ) и постоянная батоксовая обмотка (ПБ). Эти обмотки прокладываются по трассе обмоток КШ и КБ и никаких видов регулирования тока в процессе эксплуатации не имеют.

д) Специальные обмотки (СО), предназначенные для компенсации магнитных полей от отдельных крупных ферромагнитных масс и мощных электрических установок (контейнеры с ракетами, тральные агрегаты, аккумуляторные батареи и т.д.)

Питание обмоток РУ осуществляется только постоянным током от специальных агрегатов питания РУ. Агрегатами питания РУ являются электромашинные преобразователи, состоящие из приводного двигателя переменного тока и генератора постоянного тока.

Для питания преобразователей и обмоток РУ на кораблях устанавливаются специальные щиты питания РУ, получающие питание от двух источников тока, расположенных на разных бортах. На щитах РУ устанавливается необходимая коммутационная, защитная, измерительная и сигнальная аппаратура.

Для автоматического управления токами в обмотках РУ устанавливается специальная аппаратура, которая производит регулировку токов в обмотках РУ в зависимости от магнитного курса корабля. В настоящее время на кораблях используются регуляторы тока типа «КАДР-М» и «КАДМИЙ».

Наряду с обмоточным размагничиванием, т.е. использованием РУ, надводные корабли и подводные лодки периодически подвергаются безобмоточному размагничиванию.

Сущность безобмоточного размагничивания заключается в том, что корабль подвергается кратковременному воздействию сильных, искусственно созданных магнитных полей, уменьшающих МПК до определенных норм. Сам корабль при этом методе никаких стационарных размагничивающих обмоток не имеет. Безобмоточное размагничивание производится на специальных стендах СБР (стенд безобмоточного размагничивания).

Основными недостатками метода безобмоточного размагничивания являются недостаточная стабильность размагниченного состояния корабля, невозможность компенсации индуктивных составляющих МПК, зависящих от курса и длительность процесса безобмоточного размагничивания.

Таким образом, максимальное снижение магнитного поля корабля достигается путем применения двух методов размагничивания - обмоточного и безобмоточного. Применение РУ позволяет скомпенсировать МПК в процессе эксплуатации, но так как магнитное поле корабля с течением времени может значительно изменяться, то корабли нуждаются в периодической магнитной обработке на СБР. Кроме того на СБР производятся замеры величины магнитного поля корабля, с целью поддержания МПК в установленных приделах.

Заключение

Таким образом, рассмотренные физические поля корабля связаны непосредственно с его эксплуатацией. На использовании этих физических полей построены различные системы обнаружения кораблей и ПЛ, системы наведения оружия, а также неконтактные взрыватели минно-торпедного оружия.

В связи с этим, снижение уровней физических полей корабля и поддержание их в допустимых пределах, является важной задачей всего экипажа корабля.

Обнаружение корабля любыми средствами наблюдения, а также срабатывание неконтактных систем самонаведения и взрывателей оружия происходит тогда, когда интенсивность поля корабля превысит порог чувствительности указанных средств.

Существует несколько принципиально различных способов уменьшения вероятности обнаружения и поражения кораблей боевыми средствами и неконтактными системами. Сущность их сводится к следующему:

1. Использовать маскирующие особенности полей Мирового океана, особенности водной или воздушной среды, тактические приемы с таким расчетом, чтобы по возможности наблюдая за противником, обеспечить на определенном расстоянии собственную скрытность и наименьшую вероятность поражения неконтактным оружием.

2. Снизить интенсивность источников физического поля корабля с помощью конструктивных и организационных мероприятий. Этот способ называют обеспечением физической защиты корабля.

Защищенность корабля от обнаружения и воздействия различных видов оружия в значительной степени влияют на боеспособность корабля и на эффективное выполнение стоящих перед кораблем задач. Чем лучше обеспечена защита корабля, тем меньше вероятность получения им различных повреждений.

Если же корабль все же получает повреждения от воздействия оружия противника (или аварийные повреждения) то он должен обладать способностью противостоять этим повреждениям и восстанавливать свою боеспособность. Таким качеством является живучесть корабля.

Данное качество будет рассмотрено на следующем занятии.

Учебно-методическое обеспечение

1.Наглядные пособия: стенд «Продольный разрез корабля»,

Устройство УРТ-850.

2.Технические Средства Обучения: кодоскоп.

3.Приложение: слайды для кодоскопа.

Литература

1. УП «Физические поля корабля» Инв. № 210

Размещено на Allbest.ru

Подобные документы

    Основные цели и задачи создания корабля "Севастополь". Научно-техническая и промышленно-производственная база, имеющиеся ресурсы для создания судна. Характеристики, тактико-технические данные и особенности проекта корабля и его энергетических установок.

    курсовая работа , добавлен 04.12.2015

    Анализ разработки и внедрения интегрированной логистической поддержки корабля и систем вооружения на всех стадиях жизненного цикла судна, перечень необходимых нормативно-технических документов. График дефектных снарядов и расчет их среднего количества.

    курсовая работа , добавлен 20.01.2012

    Физические и химические свойства фосфорорганических соединений, механизм действия, влияние на различные системы, действие на ферменты, способы проникновения и идентификации. Механизм инактивирования холинэстеразы ФОС, первая помощь при отравлениях.

    реферат , добавлен 22.09.2009

    Сильнодействующие ядовитые вещества: определение, поражающие факторы, воздействие на человека. Физические, химические, токсические свойства и способы защиты. Профилактика возможных аварий на химически опасных объектах и снижение ущерба от них.

    курсовая работа , добавлен 02.05.2011

    Сернистый ангидрид, его физические, химические, токсические свойства. Оценка химической обстановки при разрушении емкостей, содержащих СДЯВ. Расчет глубины зоны заражения при аварии на химически опасном объекте. Способы локализации источника заражения.

    курсовая работа , добавлен 19.12.2011

    Влияние радиации на рождение людей с генными мутациями. Умственные и физические недостатки людей, появившихся после взрывов на Семипалатинском ядерном полигоне (Казахстан): микроцефалия, сколиоз, синдром Дауна, спинальная атрофия, церебральный паралич.

    презентация , добавлен 22.10.2013

    Иприт (горчичный газ) - боевое отравляющее вещество кожно-нарывного цитотоксического действия, алкилирующий агент. История открытия, получение, физические и химические свойства, поражающее действие. Первая помощь при поражении ипритом; защитные средства.

    презентация , добавлен 01.11.2013

    Актуальность и значимость механизма использования воздушного пространства. Признаки принципов охраны воздушного пространства: неприкосновенность, взаимное уважение суверенитета, мирное разрешение конфликтных ситуаций, всестороннее сотрудничество.

    реферат , добавлен 14.01.2009

    Мероприятия и действия по защите населения в военное время. Рекомендации по режимам защиты в зонах радиоактивного, химического, бактериологического заражения. Основные способы защиты населения от оружия массового поражения. Укрытие в защитных сооружениях.

    реферат , добавлен 15.06.2011

    Оружие массового поражения. Средства индивидуальной и коллективной защиты. Первая доврачебная неотложная помощь. Сердечно-легочная реанимация. Первая помощь при отравлениях. Обработка ран. Отморожение, ожоги, электротравмы, тепловой удар, утопление.

Магнитометрические приборы

Для измерения характеристик: магнитного поля и магнитных свойств физических объектов применяются магнитометры.

В зависимости от методов измерений магнитометры подразделяются на:

· Магнитостатические;

· Электромагнитные;

· Индукционные;

· Магнитодинамические;

· Ядерные прецессионные.

Магнитное поле воздействует на все физические тела, находящиеся в его зоне. Эти воздействия неодинаковы: одни из тел намагничиваются, другие – нет; у одних намагничивание устойчиво, а у других – устойчивости не наблюдается.

Магнитные свойства материалов различают по их магнитной восприимчивости . В соответствии с их величинами все материалы подразделяют на три группы:

· диамагнитные,

· парамагнитные,

· ферромагнитные.

Диамагнитные материалы незначительно ослабляют намагничивающее поле .

К ним, например, относятся; вода, медь, висмут. Ввиду малости считают, что , т.е. диамагнетики ведут себя по отношению к магнитному полю как вакуум.

Парамагнитные материалы незначительно усиливают намагничивающее поле .

Это такие материалы как: воздух, алюминий, титан.

Ферромагнитные материалы; значительно усиливают намагничивающее поле.

Приведем некоторые из них (максимальные значения):

· мягкое железо ;

· углеродистое железо ;

· чистое отожженное в водороде железо ;

· конструкционная сталь .

Корабль постоянно находится в магнитном попе Земли и его взаимодействие с ним определяет понятие магнитного поля корабля.

На постройку корабля расходуется значительное количество конструкционной стали.

Зависимость магнитного состояния тела от напряженности намагничивающего поля: для ферромагнитных материалов определяется экспериментальным способом и называется кривой намагничивания. Наиболее полную характеристику магнитных свойств ферромагнетиков дает гистерезисная (гистерезис – отставание) кривая (рис. 4). Она строится в координатных осях намагниченности и напряженности намагничивающего поля . Основными участками гистерезисной кривой являются: – первоначальное намагничивание материала; – перемагничивание; – перемагничивание в первоначальном направлении.

Характерные точки диаграммы: точка – пересечение нисходящей ветви петли с координатной осью. В этой точке при сталь обладает остаточной намагниченностью , характеризующей степень магнитной твердости материала.

Точка – пересечение нисходящей ветви с осью показывает величину напряженности намагничивающего поля обратного знака, которую необходимо приложить для размагничивания материала. Величина называется коэрцитивной силой. При движении по восходящей ветви петли будем иметь подобные точки с противоположным знаком.


При намагничивании до ненасыщения гистерезисная петля суживается,

Корабль в магнитном поле Земли подвергается постоянному и индуктивному намагничиванию.

Намагничивание ферромагнитных масс корабля в магнитном поле Земли соответствует начальному участку кривой намагничивания (рис. 5). Намагниченность можно разделить на постоянную и индуктивную составляющие.

В зависимости от места (широты) постройки, курса на стапеле и технологии (механические, электромагнитные и тепловые воздействия) корабль приобретает намагничивание (рис. 6), зависящее, как говорят, от магнитной предыстории.

Если корабль длительное время стоит одним курсом (в доке, при постройке и т.д.), то он намагничивается, и некоторая часть его магнитного момента остается независимо от его дальнейшего положения.

В общем случае вектор намагничивания корабля направлен произвольно относительно прямоугольной системы координат, связанной с кораблем.

Обычно используется левая система координатных осей: ось направлена вертикально к центру Земли, ось – горизонтально вдоль корабля в нос, ось – горизонтально в сторону правого борта.

Корабль является сложным геометрическим телом и намагничивается по-разному в разных плоскостях. Поэтому для анализа магнитного поля корабля вектор его намагниченности обычно представляют в виде суммы трех составляющих вдоль указанных координатных осей:

Считают, что каждая из этих составляющих создает в окружающем пространстве свое магнитное поле, т.е. магнитное поле корабля представляют в виде суммы трех полей: поле продольного намагничивания, поле поперечного намагничивания и поле вертикального намагничивания.

Таким образом, вектор напряженности МПК представляется суммой напряженности каждого из этих полей:

где – результирующий вектор напряженности поля вертикального намагничивания; – результирующий вектор напряженности поля продольного намагничивания; – результирующий вектор напряженности поля поперечного намагничивания.

Для тактических нужд анализа МПК вектор напряженности каждого из полей намагничивания корабля представляют тремя составляющими в системе координат, связанной с кораблем:

Для поля вертикального намагничивания эти составляющие, например, называются: – продольная составляющая поля вертикального намагничивания корабля; – поперечная составляющая поля вертикального намагничивания; – вертикальная составляющая поля вертикального намагничивания.

На рис. 7 представлены кривые составляющих поля вертикального намагничивания корабля, полученные в результате измерений на глубине под кораблем при перемещении датчика (наблюдателя) вдоль диаметральной плоскости (рис. 7,а) и вдоль плоскости мидель-шпангоута (рис.7,6).

С учетом постоянных и индуктивных составляющих напряженности МПК получаем для поля вертикального намагничивания 6 составляющих:

где , – знаки индуктивного и постоянного намагничивания соответственно; – знак поля вертикального намагничивания. Совместив мысленно на рис. 7 точки , получим объёмное распределение поля.

Лучшие статьи по теме