Букеты, живые цветы, комнатные растения
  • Главная
  • Растения
  • Работа внешней силы при вращении тела. Работа вращения твердого тела

Работа внешней силы при вращении тела. Работа вращения твердого тела

Если м.т. вращается по окружности, то на нее действует сила , то при повороте на некоторый угол совершается элементарная работа:

(22)

Если действующая сила является потенциальной, то

тогда (24)

Мощность при вращении

Мгновенная мощность, развиваемая при вращении тела:

Кинетическая энергия вращающегося тела

Кинетическая энергия материальной точки . Кинетическая энергия sis материальных точек . Т.к. , получим выражение кинетической энергии вращения:

При плоском движении (цилиндр скатывается по наклонной плоскости) полная скорость равна:

где - скорость центра масс цилиндра.

Полная равна сумме кинетической энергии поступательного движения его центра масс и кинетической энергии вращательного движения тела относительно центра масс, т.е.:

(28)


Заключение:

А теперь, рассмотрев весь лекционный материал, подведем итог, сопоставим величины и уравнения вращательного и поступательного движения тела:

Поступательное движение Вращательное движение
Масса m Момент инерции I
Путь S Угол поворота
Скорость Угловая скорость
Импульс Момент импульса
Ускорение Угловое ускорение
Равнодействующая внешних сил F Сумма моментов внешних сил M
Основное уравнение динамики Основное уравнение динамики
Работа Fds Работа вращения
Кинетическая энергия Кинетическая энергия вращения

Приложение 1:

Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n 1 =0,5 c -1 . Момент инерции j o тела человека относи-

тельно оси вращения равен 1,6 кг м 2 . В вытянутых в стороны руках человек держит по гире массой m =2 кг каждая. Расстояние между гирями l 1 =l,6 м. Опре­делить частоту вращения n 2 , скамьи с человеком, когда он опустит руки и расстояние l 2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Свойства симметрии и законы сохранения.

Сохранение энергии.

В основе законов сохранения, рассматриваемых в механике, лежат свойства пространства и времени.

Сохранение энергии связано с однородностью времени, сохранение импульса – с однородностью пространства и, наконец, сохранение момента импульса находится в связи с изотропией пространства.

Начинаем с закона сохранения энергии. Пусть система частиц находится в неизменных условиях(это имеет место если система замкнута или подвержена воздействию постоянного внешнего силового поля); связи(если они есть) идеальны и стационарны. В этом случае время в силу своей однородности не может входить явно в функцию Лагранжа. Действительно однородность означает равнозначность всех моментов времени. Поэтому замена одного момента времени другим без изменения значений координат и скоростей частиц не должна изменять механические свойства системы. Это конечно справедливо в том случае, если замена одного момента времени другим не изменяет условий, в которых находится система, то есть в случае независимости от времени внешнего поля(в частности это поле может отсутствовать).

Итак для замкнутой системы находящейся в замкнутом силовом поле, .

Работа и мощность при вращении твердого тела.

Найдем выражение для работы при вращении тела. Пусть сила приложена в точке , находящейся от оси на расстоянии , - угол между направлением силы и радиус-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол точка приложения проходит путь и работа равна произведению проекции силы на направление смещения на величину смещения:

Модуль момента силы равен:

тогда получим следующую формулу для вычисления работы:

Таким образом, работа при вращении твердого тела равна произведению момента действующей силы на угол поворота.

Кинетическая энергия вращающегося тела.

Моментом инерции мат.т. наз. физ. величина численно равная произведению массы мат.т. на квадрат расстояния этой точки до оси вращения.W ki =m i V 2 i /2 V i -Wr i Wi=miw 2 r 2 i /2 =w 2 /2*m i r i 2 I i =m i r 2 i момент инерции твердого тела равен сумме всех мат.т I=S i m i r 2 i моментом инерции твердого тела наз. физ.величина равная сумме произведений мат.т. на квадраты расстояний от этих точек до оси. W i -I i W 2 /2 W k =IW 2 /2

W k =S i W ki момент инерции при вращательном движении явл. аналогом массы при поступательном движении. I=mR 2 /2

21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.

Неинерциальная система отсчёта - произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем отсчета: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система.

При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.

Классическая механика постулирует следующие два принципа:

время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта;

пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта.

Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняется Первый закон Ньютона.

Основное уравнение динамики относительного движения материальной точки имеет вид:

где - масса тела, - ускорение тела относительно неинерциальной системы отсчёта, - сумма всех внешних сил, действующих на тело, - переносное ускорение тела, - Кориолисово ускорение тела.

Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции:

Переносная сила инерции

Сила Кориолиса

Сила инерции - фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем.

В математических вычислениях введения этой силы происходит путём преобразования уравнения

F 1 +F 2 +…F n = ma к виду

F 1 +F 2 +…F n –ma = 0 Где F i - реально действующая сила, а –ma - «сила инерции».

Среди сил инерции выделяют следующие:

простую силу инерции;

центробежную силу, объясняющую стремление тел улететь от центра во вращающихся системах отсчёта;

силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке - это силы инерции в данной точке искривлённого пространства Эйнштейна

Центробежная сила - сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси вращения (отсюда и название).

Принцип эквивалентности сил гравитации и инерции - эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Один из вариантов его изложения: «Силы гравитационного взаимодействия пропорциональны гравитационной массе тела, силы инерции же пропорциональны инертной массе тела. Если инертная и гравитационная массы равны, то невозможно отличить, какая сила действует на данное тело - гравитационная или сила инерции.»

Формулировка Эйнштейна

Исторически, принцип относительности был сформулирован Эйнштейном так:

Все явления в гравитационном поле происходят точно так же как в соответствующем поле сил инерции, если совпадают напряжённости этих полей и одинаковы начальные условия для тел системы.

22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.

Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.

Математически принцип относительности Галилея выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой - преобразований Галилея.
Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S", движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S" будут иметь вид:
x" = x - ut, у" = у, z" = z, t" = t (1)
(штрихованные величины относятся к системе S", нештрихованные - к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.
Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:
v" = v - u, (2)
a" = a.
В классической механике движение материальной точки определяется вторым законом Ньютона:
F = ma, (3)
где m - масса точки, a F - равнодействующая всех приложенных к ней сил.
При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой.
Поэтому при преобразованиях Галилея уравнение (3) не меняется.
Это и есть математическое выражение Галилеева принципа относительности.

ПРЕОБРАЗОВАНИЯ ГАЛИЛЕЯ.

В кинематике все системы отсчета равноправны между собой и движение можно описывать в любой из них. При исследовании движений иногда приходится переходить от одной системы отсчета (с координатной системой ОХУZ) к другой - (О`Х`У`Z`). Рассмотрим случай, когда вторая система отсчета движется относительно первой равномерно и прямолинейно со скоростью V=соnst.

Для облегчения математического описания предположим, что соответствующие оси координат параллельны друг другу, что скорость направлена вдоль оси Х, и что в начальный момент времени (t=0) начала координат обеих систем совпадали друг с другом. Используя справедливое в классической физике допущение об одинаковом течении времени в обеих системах, можно записать соотношения, связывающие координаты некоторой точки А(х,у,z) и А (х`,у`,z`) в обеих системах. Такой переход от одной системы отсчета к другой носит название преобразований Галилея):

ОХУZ О`Х`У`Z`

х = х` + V x t х` = х - V x t

x = v` x + V x v` x = v x - V x

a x = a` x a` x = a x

Ускорение в обеих системах одинаково (V=соnst). Глубокий смысл преобразований Галилея будет выяснен в динамике. Преобразование скоростей Галилея отражает имеющий место в классической физике принцип независимости перемещений.

Сложение скоростей в СТО

Классический закон сложения скоростей не может быть справедлив, т.к. он противоречит утверждению о постоянстве скорости света в вакууме. Если поезд движется со скоростью v и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительна Земли все равно c , а не v + c .

Рассмотрим две системы отсчета.

В системе K 0 тело движется со скоростью v 1 . Относительно же системы K оно движется со скоростью v 2 . Согласно закону сложения скоростей в СТО:

Если v << c и v 1 << c , то слагаемым можно пренебречь, и тогда получим классический закон сложения скоростей: v 2 = v 1 + v .

При v 1 = c скорость v 2 равна c , как этого требует второй постулат теории относительности:

При v 1 = c и при v = c скорость v 2 вновь равна скорости c .

Замечательным свойством закона сложения является то, что при любых скоростях v 1 и v (не больше c ), результирующая скорость v 2 не превышает c . Скорость движения реальных тел больше, чем скорость света, невозможна.

Сложение скоростей

При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

Классическая механика

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.


Здесь - это момент импульса относительно оси вращения, то есть проекция на ось момента импульса, определенного относительно некоторой точки, принадлежащей оси (см. лекцию 2). - это момент внешних сил относительно оси вращения, то есть проекция на ось результирующего момента внешних сил, определенного относительно некоторой точки, принадлежащей оси, причем выбор этой точки на оси, как и в случае с значения не имеет. Действительно (рис. 3.4), где - составляющая силы, приложенной к твердому телу, перпендикулярная оси вращения, - плечо силы относительно оси.

Рис. 3.4.

Поскольку ( - момент инерции тела относительно оси вращения), то вместо можно записать

(3.8)


Вектор всегда направлен вдоль оси вращения, а - это составляющая вектора момента силы вдоль оси.

В случае получаем соответственно и момент импульса относительно оси сохраняется. При этом сам вектор L , определенный относительно какой-либо точки на оси вращения, может меняться. Пример такого движения показан на рис. 3.5.

Рис. 3.5.

Стержень АВ, шарнирно закрепленный в точке А, вращается по инерции вокруг вертикальной оси таким образом, что угол между осью и стержнем остается постоянным. Вектор момента импульса L , относительно точки А движется по конический поверхности с углом полураствора однако проекция L на вертикальную ось остается постоянной, поскольку момент силы тяжести относительно этой оси равен нулю.

Кинетическая энергия вращающегося тела и работа внешних сил (ось вращения неподвижна).

Скорость i -й частицы тела

(3.11)

где - расстояние частицы до оси вращение Кинетическая энергия

(3.12)

так как угловая скорость вращения для всех точек одинакова.

В соответствии с законом изменения механической энергии системы элементарная работа всех внешних сил равна приращению кинетической энергии тела:


опустим, что диск точила вращается по инерции с угловое скоростью и мы останавливаем его, прижимая какой-либо предмет к краю диска с постоянным усилием. При этом на диск будет действовать постоянная по величине сила направленная перпендикулярно его оси. Работа этой силы


где - момент инерции диска точила вместе с якорем электромотора.

Замечание. Если силы таковы, что то работу они не производят.

Свободные оси. Устойчивость свободного вращения.

При вращении тела вокруг неподвижной оси эта ось удерживается в неизменном положении подшипниками. При вращении несбалансированных частей механизмов оси (валы) испытывают определенную динамическую нагрузку, Возникают вибрации, тряска, и механизмы могут разрушиться.

Если твердое тело раскрутить вокруг произвольной оси, жестко связанной с телом, и высвободить ось из подшипников, то ее направление в пространстве, вообще говоря, будет меняться. Для того, чтобы произвольная ось вращения тела сохраняла свое направление неизменным, к ней необходимо приложить определенные силы. Возникающие при этом ситуации показаны на рис. 3.6.

Рис. 3.6.

В качестве вращающегося тела здесь использован массивный однородный стержень АВ, прикрепленный к достаточно эластичной оси (изображена двойными штриховыми линиями). Эластичность оси позволяет визуализировать испытываемые ею динамические нагрузки. Во всех случаях ось вращения вертикальна, жестко связана со стержнем и укреплена в подшипниках; стержень раскручен вокруг этой оси и предоставлен сам себе.

В случае, изображенном на рис. 3.6а, ось вращения является для точки В стержня главной, но не центральной, Ось изгибается, со стороны оси на стержень действует сила обеспечивающая его вращение (в НИСО, связанной со стержнем, эта сила уравновешивает центробежную силу инерции). Со стороны стержня на ось действует сила уравновешенная силами со стороны подшипников.

В случае рис. 3.6б ось вращения проходит через центр масс стержня и является для него центральной, но не главной. Момент импульса относительно центра масс О не сохраняется и описывает коническую поверхность. Ось сложным образом деформируется (изламывается), со стороны оси на стержень действуют силы и момент которых обеспечивает приращение (В НИСО, связанной со стержнем, момент упругих сил компенсирует момент центробежных сил инерции, действующих на одну и другую половины стержня). Со стороны стержня на ось действуют силы и направленные противоположно силам и Момент сил и уравновешен моментом сил и возникающих в подшипниках.

И только в том случае, когда ось вращения совпадает с главной центральной осью инерции тела (рис.3.6в), раскрученный и предоставленный сам себе стержень не оказывает на подшипники никакого воздействия. Такие оси называют свободными осями, потому что, если убрать подшипники, они будут сохранять свое направление в пространстве неизменным.

Иное дело, будет ли это вращение устойчивым по отношению к малым возмущениям, всегда имеющим место в реальных условиях. Опыты показывают, что вращение вокруг главных центральных осей с наибольшим и наименьшим моментами инерции является устойчивым, а вращение вокруг оси с промежуточным значением момента инерции - неустойчивым. В этом можно убедиться, подбрасывая вверх тело в виде параллелепипеда, раскрученное вокруг одной из трех взаимно перпендикулярных главных центральных осей (рис. 3.7). Ось AA" соответствует наибольшему, ось BB" - среднему, а ось CC" - наименьшему моменту инерции параллелепипеда. Если подбросить такое тело, сообщив ему быстрое вращение вокруг оси AA" или вокруг оси CC", можно убедиться в том, что это вращение является вполне устойчивым. Попытки заставить тело вращаться вокруг оси BB" к успеху не приводят - тело движется сложным образом, кувыркаясь в полете.

- твердое тело - углы Эйлера

См. также:

Если тело приводится во вращение силой , то его энергия возрастает на величину затраченной работой. Также как и в поступательном движении, эта работа зависит от силы и произведенного перемещения. Однако перемещение теперь угловое и выражение для работы при перемещении материальной точки неприменимо. Т.к. тело абсолютно твердое, то работа силы , хотя она приложена в точке, равна работе, затраченной на поворот всего тела.

При повороте на угол точка приложения силы проходит путь . При этом работа равна произведению проекции силы на направление смещения на величину смещения: ; Из рис. видно, что -плечо силы,а -момент силы.

Тогда элементарная работа: . Если , то .

Работа вращения идёт на увеличение кинетической энергии тела

; Подставив , получим: или с учетом уравнения динамики: , видно, что , т.е. то же самое выражение.

6.Неинерциальные системы отсчёта

Конец работы -

Эта тема принадлежит разделу:

Кинематика поступательного движения

Физические основы механики.. кинематика поступательного движения.. механическое движение формой существования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение
Материя, как известно, существует в двух видах: в виде вещества и поля. К первому виду относятся атомы и молекулы, из которых построены все тела. Ко второму виду относятся все виды полей: гравитаци

Пространство и время
Все тела существуют и движутся в пространстве и времени. Эти понятия являются основополагающими для всех естественных наук. Любое тело имеет размеры, т.е. свою пространственную протяженность

Система отсчета
Для однозначного определения положения тела в произвольный момент времени необходимо выбрать систему отсчета - систему координат, снабженнуя часами и жестко связаннуя с абсолютно твердым телом, по

Кинематические уравнения движения
При движении т.М ее координаты и меняются со временем, поэтому для задания закона движения необходимо указать вид фун

Перемещение, элементарное перемещение
Пусть точка М движется от А к В по криволинейному пути АВ. В начальный момент ее радиус-вектор равен

Ускорение. Нормальное и тангенциальное ускорения
Движение точки характеризуется также ускорением-быстротой изменения скорости. Если скорость точки за произвольное время

Поступательное движение
Простейшим видом механического движения твердого тела является поступательное движение, при котором прямая, соединяющая любые две точки тела перемещается вместе с телом, оставаясь параллельной| сво

Закон инерции
В основе классической механики лежат три закона Ньютона, сформулированные им в сочинении «Математические начала натуральной философии», опубликованном в 1687г. Эти законы явились результатом гениал

Инерциальная система отсчета
Известно, что механическое движение относительно и его характер зависит от выбора системы отсчета. Первый закон Ньютона выполняется не во всех системах отсчета. Например, тела, лежащие на гладком п

Масса. Второй закон Ньютона
Основная задача динамики заключается в определении характеристик движения тел под действием приложенных к ним сил. Из опыта известно, что под действием силы

Основной закон динамики материальной точки
Уравнение описывает изменение движения тела конечных размеров под действием силы при отсутствии деформации и если оно

Третий закон Ньютона
Наблюдения и опыты свидетельствуют о том, что механическое действие одного тела на другое является всегда взаимодействием. Если тело 2 действует на тело 1, то тело 1 обязательно противодействует те

Преобразования Галилея
Они позволяют определить кинематические величины при переходе от одной инерциальной системы отсчета к другой. Возьмем

Принцип относительности Галилея
Ускорение какой-либо точки во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно одинаково:

Сохраняющиеся величины
Любое тело или система тел представляют собой совокупность материальных точек или частиц. Состояние такой системы в некоторый момент времени в механике определяется заданием координат и скоростей в

Центр масс
В любой системе частиц можно найти точку, называемую центром масс

Уравнение движения центра масс
Основной закон динамики можно записать в иной форме, зная понятие центра масс системы:

Консервативные силы
Если в каждой точке пространства на частицу, помещенную туда, действует сила, говорят, что частица находится в поле сил, например в поле сил тяжести, гравитационной, кулоновской и других сил. Поле

Центральные силы
Всякое силовое поле вызвано действием определенного тела или системы тел. Сила, действующая на частицу в этом поле об

Потенциальная энергия частицы в силовом поле
То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциально

Связь между потенциальной энергией и силой для консервативного поля
Взаимодействие частицы с окружающими телами можно описать двумя способами: с помощью понятия силы или с помощью понятия потенциальной энергии. Первый способ более общий, т.к. он применим и к силам

Кинетическая энергия частицы в силовом поле
Пусть частица массой движется в силов

Полная механическая энергия частицы
Известно, что приращение кинетической энергии частицы при перемещении в силовом поле равно элементарной работе всех сил, действующих на частицу:

Закон сохранения механической энергии частицы
Из выражения следует, что в стационарном поле консервативных сил полная механическая энергия частицы может изменяться

Кинематика
Поворот тела на некоторый угол можно

Момент импульса частицы. Момент силы
Кроме энергии и импульса существует ещё одна физическая величина, с которой связан закон сохранения - это момент импульса. Моментом импульса частицы

Момент импульса и момент силы относительно оси
Возьмем в интересующей нас системе отсчета произвольную неподвижную ось

Закон сохранения момента импульса системы
Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которые действуют также внешние силы и

Таким образом, момент импульса замкнутой системы частиц остается постоянным, не изменяется со временем
Это справедливо относительно любой точки инерциальной системы отсчета: . Моменты импульса отдельных частей системы м

Момент инерции твердого тела
Рассмотрим твердое тело, которое мож

Уравнение динамики вращения твердого тела
Уравнение динамики вращения твердого тела можно получить, записав уравнение моментов для твердого тела, вращающегося вокруг произвольной оси

Кинетическая энергия вращающегося тела
Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси, проходящей через него. Разобьем его на частицы с малыми объемами и массами

Центробежная сила инерции
Рассмотрим диск, который вращается вместе с шариком на пружине, надетой на спицу, рис.5.3. Шарик находится

Сила Кориолиса
При движении тела относительно вращающейся СО, кроме, появляется ещё одна сила-сила Кориолиса или кориолисова сила

Малые колебания
Рассмотрим механическую систему, положение которой может быть определено с помощъю одной величины, например х. В этом случае говорят, что система имеет одну степень свободы.Величиной х может быть

Гармонические колебания
Уравнение 2-го Закона Нъютона в отсутствие сил трения для квазиупругой силы вида имеет вид:

Математический маятник
Это материальная точка, подвешенная на нерастяжимой нити длиною, совершающая колебания в вертикальной плоск

Физический маятник
Это твердое тело, совершающее колебания вокруг неподвижной оси, связанной с телом. Ось перпендикулярна рисунку и нап

Затухающие колебания
В реальной колебательной системе имеются силы сопротивления, действие которых приводят к уменьшению потенциальной энергии системы, и колебания будут затухающими.В простейшем случае

Автоколебания
При затухающих колебаниях энергия системы постепенно уменьшается и колебания прекращаются. Для того, чтобы их сделать незатухающими, необходимо пополнять энергию системы извне в определенные момент

Вынужденные колебания
Если колебательная система, кроме сил сопротивления, подвергается действию внешней периодической силы, изменяющейся по гармоническому закону

Резонанс
Кривая зависимости амплитуды вынужденых колебаний от приводит к тому, что при некоторой определенной для данной систе

Распространение волн в упругой среде
Если в каком либо месте упругой среды (твёрдой, жидкой, газообразной) поместить источник колебаний, то из-за взаимодействия между частицами колебание будет распространяться в среде от частицы к час

Уравнение плоской и сферической волн
Уравнение волны выражает зависимость смещения колеблющейся частицы от ее кординат,

Волновое уравнение
Уравнение волны является решением дифференциального уравнения, называемого волновым. Для его установления найдем вторые частные производные по времени и координатам от урав

Сила трения всегда направлена вдоль поверхности соприкосновения в сторону, противоположную движению. Она всегда меньше силы нормального давления.

Здесь:
F - гравитационная сила, с которой два тела притягиваются друг к другу (Ньютон),
m 1 - масса первого тела (кг),
m 2 - масса второго тела (кг),
r - расстояние между центрами масс тел (метр),
γ - гравитационная постоянная 6.67 · 10 -11 (м 3 /(кг · сек 2)),

Напряжённость гравитацио́нного по́ля - векторная величина, характеризующая гравитационное поле в данной точке и численно равная отношению силы тяготения, действующей на тело, помещённое в данную точку поля, к гравитационной массе этого тела:

12. Изучая механику твердого тела, мы использовали понятие абсолютно твердого тела. Но в природе не существует абсолютно твердых тел, т.к. все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются .
Деформация называется упругой , если после того, как на тело перестали действовать внешние силы тело восстанавливает первоначальные размеры и форму. Деформации, сохраняющиеся в теле после прекращения действия внешних сил, называютсяпластическими (или остаточными )

РАБОТА И МОЩНОСТЬ

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где - перемещение тела, - сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где - момент силы, - угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.
Мощность - это работа за единицу времени (1 с): . Мощность измеряется в Ваттах [Вт].

14.Кинети́ческая эне́ргия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательногодвижения.

Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:

Есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что , Получим:

Если система замкнута, то есть , то , а величина

остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

Масса тела

Скорость центра масс тела

Момент инерции тела

Угловая скорость тела.

15.Потенциальная энергия - скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил.

16. Растяжение или сжатие пружины приводит к запасанию ее потенциальной энергии упругой деформации. Возвращение пружины к положению равновесия приводит к высвобождению запасенной энергии упругой деформации. Величина этой энергии равна:

Потенциальная энергия упругой деформации..

- работа силы упругости и изменение потенциальной энергии упругой деформации.

17.консервати́вные си́лы (потенциальные силы) - силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил) . Отсюда следует определение: консервативные силы - такие силы, работа которых по любой замкнутой траектории равна 0

Диссипати́вные си́лы - силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту.

18. Вращением вокруг неподвижной оси называется такое движение твердого тела, при котором во все время движения две его точки остаются неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, по окружностям, центры которых лежат на оси вращения.

Момент инерции - скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина J a , равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

§ m i - масса i -й точки,

§ r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

Лучшие статьи по теме