Букеты, живые цветы, комнатные растения

Ряд фурье. Разложение функции в ряд Фурье

Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Взаимоуничтожаем 1 и –1 в скобках и проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера № 3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример № 2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Одним из видов функциональных рядов является тригонометрический ряд

Ставится задача подобрать коэффициенты ряда так, чтобы он сходился к заданной в интервале [-π, π] функции; иначе говоря, требуется разложить данную функцию в тригонометрический ряд. Достаточное условие разрешимости этой задачи состоит в том, чтобы функция была в интервале [-π, π] кусочно-непрерывна и кусочно-дифференцируема, т. е. чтобы интервал [-π, π] мог быть разбит на конечное число частичных интервалов, в каждом из которых данная функция непрерывна и имеет производную (на концах частичных интервалов функция должна иметь конечные односторонние пределы и односторонние производные, при вычислении которых в качестве значения функции в конце частичного интервала берется ее односторонний предел). Условие кусочной дифференцируемости может быть заменено условием кусочной монотонности функции, т. е. требованием, чтобы в каждом из частичных интервалов функция была монотонна. Достаточным условием разложимости функции в интервале [-π, π] в тригонометрический ряд является также требование, чтобы в этом интервале функция имела ограниченное изменение. По определению функции f(x) имеет в интервале ограниченное изменение, если при любом разбиении этого интервала на конечное число интервалов

величина

ограничена сверху одним и тем же числом.

Именно с такими функциями приходится иметь дело при решении практических задач.

При выполнении любого из трех указанных достаточных условий функция f(x) представляется в интервале [-π, π] тригонометрическим рядом, у которого коэффициенты определяются по формулам

При таких коэффициентах тригонометрический ряд называется рядом Фурье . Этот ряд сходится к f(x) в каждой точке ее непрерывности; в точках разрыва он сходится к среднему арифметическому левого и правого предельных значений, т. е. k , если х есть точка разрыва (рис. 1); на границах отрезка ряд сходится к .

Рисунок 1.

Функция, выражаемая рядом Фурье, есть функция периодическая, а потому ряд, составленный для функции, заданной на отрезке [-π, π], сходится вне этого отрезка к периодическому продолжению этой функции (рис. 2).

Рисунок 2.

Если рядом Фурье представляется функция f(x), заданная в произвольном интервале [α, α+2π] длиной 2π, то коэффициенты ряда а 0 , a k , b k (коэффициенты Фурье) можно определить по указанным формулам, в которых пределы интегрирования заменены на α и α+2π. Вообще, поскольку в формулах для а 0 , a k , b к стоят функции с периодом 2π, интегрирование можно проводить по любому интервалу с длиной 2π.

Ряд Фурье может быть использован для приближенного представления функции, а именно: функция f(x) заменяется приближенно равной ей суммой s n (x) первых нескольких членов ряда Фурье:

Выражение s n (x), где а 0 , a k , b k являются коэффициентами Фурье функции f(x), по сравнению с другими выражениями такого же вида с тем же значением n, но с другими коэффициентами, приводит к минимальному среднему квадратичному отклонению s n (x) от f(х), которое определяется как

В зависимости от рода симметрии функции возможны некоторые упрощения. Если функция четная, т. е. f(-x)=f(x), то

и функция разлагается в ряд по косинусам. Если функция нечетная, т. е. f(-х)=-f(x), то

и функция разлагается в ряд по синусам. Если функция удовлетворяет условию f(x+π)=-f(x), т. е. кривая, относящаяся к половине отрезка длиной 2π, является зеркальным отражением другой половины кривой, то

Функция может быть задана не только на отрезке длиной 2π, но также на отрезке любой длины 2l. Если она на этом отрезке удовлетворяет приведенным выше условиям, то она разложима в ряд Фурье следующего вида:

причем коэффициенты ряда вычисляются по формулам

В табл. 1 даны разложения некоторых функций.

Таблица 1.

Тригонометрический ряд можно записать и в таком виде:

Ряд Фурье функции f(x) сходится тем скорее, чем более гладкой является функция. Если функция f(x) и ее производные f"(x), f"(x), ..., f k -1 (x) всюду непрерывны, а f (k) (x) допускает лишь точки разрыва 1-го рода в конечном числе, то коэффициенты Фурье а n , b n функции f(х) будут

Символом обозначается такая величина, что

Разложение в тригонометрический ряд называют гармоническим анализом, а тригонометрические функции, входящие в этот ряд, - гармониками. Вычисление по составляющим гармоникам называется гармоническим синтезом.

При расчетах конструкций часто приходится разлагать в ряд Фурье различные функции, заданные графиками, и прежде всего изображающие нагрузку. В табл. 2 и 3 даны разложения для некоторых функций, характерных для нагрузок, в том числе и ряды, соответствующие сосредоточенным силам.

Таблица 2.
График функций
Ряд Фурье
n
Рядом Фурье функции f(x) на интервале (-π ; π) называется тригонометрический ряд вида:
, где

Рядом Фурье функции f(x) на интервале (-l;l) называется тригонометрический ряд вида:
, где

Назначение . Онлайн калькулятор предназначен для разложение функции f(x) в Ряд Фурье.

Для функций по модулю (например, |x|), используйте разложение по косинусам .

Правила ввода функций :

Для функций по модулю используйте разложение по косинусам. Например, для |x| необходимо ввести функцию без модуля, т.е. x .

Ряд Фурье кусочно-непрерывной, кусочно-монотонной и ограниченной на интервале (-l ;l ) функции сходится на всей числовой оси.

Сумма ряда Фурье S(x) :

  • является периодической функцией с периодом 2l . Функция u(x) называется периодической с периодом T (или T-периодической), если для всех x области R, u(x+T)=u(x).
  • на интервале (-l ;l ) совпадает с функцией f (x ), за исключением точек разрыва
  • в точках разрыва (первого рода, т.к. функция ограничена) функции f (x ) и на концах интервала принимает средние значения:
.
Говорят, что функция раскладывается в ряд Фурье на интервале (-l ;l ): .

Если f (x ) – четная функция, то в ее разложении участвуют только четные функции, то есть b n =0.
Если f (x ) – нечетная функция, то в ее разложении участвуют только нечетные функции, то есть а n =0

Рядом Фурье функции f (x ) на интервале (0;l ) по косинусам кратных дуг называется ряд:
, где
.
Рядом Фурье функции f (x ) на интервале (0;l ) по синусам кратных дуг называется ряд:
, где .
Сумма ряда Фурье по косинусам кратных дуг является четной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.
Сумма ряда Фурье по синусам кратных дуг является нечетной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.
Ряд Фурье для данной функции на данном интервале обладает свойством единственности, то есть если разложение получено каким-либо иным способом, чем использование формул, например, при помощи подбора коэффициентов, то эти коэффициенты совпадают с вычисленными по формулам.

Пример №1 . Разложить функцию f(x)=1:
а) в полный ряд Фурье на интервале (-π ;π);
б) в ряд по синусам кратных дуг на интервале (0;π); построить график полученного ряда Фурье
Решение :
а) Разложение в ряд Фурье на интервале(-π;π) имеет вид:
,
причем все коэффициенты b n =0, т.к. данная функция – четная; таким образом,

Очевидно, равенство будет выполнено, если принять
а 0 =2, а 1 =а 2 =а 3 =…=0
В силу свойства единственности это и есть искомые коэффициенты. Таким образом, искомое разложение: или просто 1=1.
В таком случае, когда ряд тождественно совпадает со своей функцией, график ряда Фурье совпадает с графиком функции на всей числовой прямой.
б) Разложение на интервале (0;π) по синусам кратных дуг имеет вид:
Подобрать коэффициенты так, чтобы равенство тождественно выполнялось, очевидно, невозможно. Воспользуемся формулой для вычисления коэффициентов:


Таким образом, для четных n (n =2k ) имеем b n =0, для нечетных (n =2k -1) -
Окончательно, .
Построим график полученного ряда Фурье, воспользовавшись его свойствами (см. выше).
Прежде всего, строим график данной функции на заданном интервале. Далее, воспользовавшись нечетностью суммы ряда, продолжаем график симметрично началу координат:

Продолжаем периодическим образом на всей числовой оси:


И наконец, в точках разрыва заполняем средние (между правым и левым пределом) значения:

Пример №2 . Разложить функцию на интервале (0;6) по синусам кратных дуг.
Решение : Искомое разложение имеет вид:

Поскольку и левая, и правая части равенства содержат только функции sin от различных аргументов, следует проверить, совпадают ли при каких-либо значениях n (натуральных!) аргументы синусов в левой и правой частях равенства:
или , откуда n =18. Значит, такое слагаемое содержится в правой части и коэффициент при нем должен совпадать с коэффициентом в левой части: b 18 =1;
или , откуда n =4. Значит, b 4 =-5.
Таким образом, при помощи подбора коэффициентов удалось получить искомое разложение.

Лучшие статьи по теме