Букеты, живые цветы, комнатные растения
  • Главная
  • Розы
  • Ряд фурье. Ряды Фурье: история и влияние математического механизма на развитие науки Разложение в ряд фурье для чайников

Ряд фурье. Ряды Фурье: история и влияние математического механизма на развитие науки Разложение в ряд фурье для чайников

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций в ряд Фурье.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

Где коэффициенты ряда Фурье,

Однако чаще приведенную выше формулу приводят к зависимости от х. Поскольку u=2πх/L, значит, du=(2π/L)dx, а пределы интегрирования - от -L/2 до L/2 вместо - π до π. Следовательно, ряд Фурье для зависимости от х имеет вид

где в диапазоне от -L/2 до L/2 коэффициенты ряда Фурье,

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).

Функция , определённая при всех значениях x называется периодической , если существует такое число T (T≠ 0) , что при любом значении x выполняется равенство f(x + T) = f(x) . Число T в этом случае является периодом функции.

Свойства периодических функций :

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2) Если функция f(x) имеет период Т ,то функция f(ax) имеет период

В самом деле, для любого аргумента х :

(умножение аргумента на число означает сжатие или растяжение графика этой функции вдоль оси ОХ )

Например, функция имеет период , периодом функции является

3) Если f(x) периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежутку длины Т (при этом предполагается, что эти интегралы существуют).

Ряд Фурье для функции с периодом T= .

Тригонометрическим рядом называется ряд вида:

или, короче,

Где , , , , , … , , , … - действительные числа, называемые коэффициентами ряда.

Каждое слагаемое тригонометрического ряда является периодической функцией периода (т.к. - имеет любой

период, а период () равен , а значит, и ). Каждое слагаемое (), при n= 1,2,3… является аналитическим выражением простого гармонического колебания , где A - амплитуда,

Начальная фаза. Учитывая сказанное, получаем: если тригонометрический ряд сходится на отрезке длины периода , то он сходится на всей числовой оси и его сумма является периодической функцией периода .

Пусть тригонометрический ряд равномерно сходится на отрезке (следовательно, и на любом отрезке) и его сумма равна . Для определения коэффициентов этого ряда воспользуемся следующими равенствами:

А так же воспользуемся следующими свойствами.

1) Как известно, сумма равномерно сходящегося на некотором отрезке ряда, составленного из непрерывных функций, сама является непрерывной функцией на этом отрезке. Учитывая это, получим, что сумма равномерно сходящегося на отрезке тригонометрического ряда - непрерывная функция на всей числовой оси.

2) Равномерная сходимость ряда на отрезке не нарушится, если все члены ряда умножить на функцию , непрерывную на этом отрезке.

В частности, равномерная сходимость на отрезке данного тригонометрического ряда не нарушится, если все члены ряда умножить на или на .

По условию

В результате почленного интегрирования равномерно сходящегося ряда (4.2) и учитывая вышеприведенные равенства (4.1) (ортогональность тригонометрических функций), получим:

Следовательно, коэффициент

Умножая равенство (4.2) на , интегрируя это равенство в пределах от до и, учитывая вышеприведенные выражения (4.1), получим:


Следовательно, коэффициент

Аналогично, умножая равенство (4.2) на и интегрируя его в пределах от до , с учетом равенств (4.1) имеем:

Следовательно, коэффициент

Таким образом, получены следующие выражения для коэффициентов ряда Фурье:

Достаточные признаки разложимости функции в ряд Фурье. Напомним, что точку x o разрыва функции f(x) называют точкой разрыва первого рода, если существуют конечные пределы справа и слева функции f(x) в окрестности точки.

Предел справа,

Предел слева.

Теорема (Дирихле). Если функция f(x) имеет период и на отрезке непрерывна или имеет конечное число точек разрыва первого рода и, кроме того, отрезок можно разбить на конечное число отрезков так, что внутри каждого из них f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях x . Причём в точках непрерывности функции f(x) его сумма равна f(x) , а в точках разрыва функции f(x) его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. Кроме того, ряд Фурье для функции f(x) сходится равномерно на любом отрезке, который вместе со своими концами принадлежит интервалу непрерывности функции f(x) .

Пример : разложить в ряд Фурье функцию

Удовлетворяющую условию .

Решение. Функция f(x) удовлетворяет условиям разложимости в ряд Фурье, поэтому можно записать:

В соответствии с формулами (4.3) , можно получить следующие значения коэффициентов ряда Фурье:

При вычислении коэффициентов ряда Фурье использовалась формула «интегрирования по частям».

И, следовательно,

Ряды Фурье для чётных и нечётных функций с периодом T = .

Используем следующее свойство интеграла по симметричному относительно x=0 промежутку:

Если f(x) - нечётная функция,

если f(x) - чётная функция.

Заметим, что произведение двух чётных или двух нечётных функций - чётная функция, а произведение чётной функции на нечётную функцию - нечётная функция. Пусть теперь f(x) - чётная периодическая функция с периодом , удовлетворяющая условиям разложимости в ряд Фурье. Тогда, используя вышеуказанное свойство интегралов, получим:

Таким образом, ряд Фурье для чётной функции содержит только чётные функции - косинусы и записывается так:

а коэффициенты bn = 0.

Рассуждая аналогично, получаем, что если f(x) - нечётная периодическая функция, удовлетворяющая условиям разложимости в ряд Фурье, то, следовательно, ряд Фурье для функции нечётной содержит только нечётные функции - синусы и записывается следующим образом:

при этом an =0 при n= 0, 1,…

Пример: разложить в ряд Фурье периодическую функцию

Так как заданная нечетная функция f(x) удовлетворяет условиям разложимости в ряд Фурье, то

или, что то же,

И ряд Фурье для данной функции f(x) можнозаписать так:

Ряды Фурье для функций любого периода T=2l .

Пусть f(x) - периодическая функция любого периода T=2l (l- полупериод), кусочно-гладкая или кусочно-монотонная на отрезке [-l, l ]. Полагая x=at, получим функцию f(at) аргумента t, период которой равен . Подберём а так, чтобы период функции f(at) был равен , т.е. T = 2l

Решение. Функция f(x) - нечётная, удовлетворяющая условиям разложимости в ряд Фурье, поэтому на основании формул (4.12) и (4.13) имеем:

(при вычислении интеграла использовали формулу «интегрирования по частям»).

Ряд Фурье периодических функций с периодом 2π.

Ряд Фурье позволяет изучать периодические функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах.

Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов (ряд считается сходящимся, если сходится последовательность частичных сумм, составленных из его членов):

Стандартная (=обычная) запись через сумму sinx и cosx

f(x)=a o + a 1 cosx+a 2 cos2x+a 3 cos3x+...+b 1 sinx+b 2 sin2x+b 3 sin3x+...,

где a o , a 1 ,a 2 ,...,b 1 ,b 2 ,.. - действительные константы, т.е.

Где для диапазона от -π до π коэффициенты ряда Фурье рассчитываются по формулам:

Коэффициенты a o ,a n и b n называются коэффициентами Фурье , и если их можно найти, то ряд (1) называется рядом Фурье, соответствующим функции f(x). Для ряда (1) член (a 1 cosx+b 1 sinx) называется первой или основной гармоникой,

Другой способ записи ряда - использование соотношения acosx+bsinx=csin(x+α)

f(x)=a o +c 1 sin(x+α 1)+c 2 sin(2x+α 2)+...+c n sin(nx+α n)

Где a o - константа, с 1 =(a 1 2 +b 1 2) 1/2 , с n =(a n 2 +b n 2) 1/2 - амплитуды различных компонент, а равен a n =arctg a n /b n .

Для ряда (1) член (a 1 cosx+b 1 sinx) или c 1 sin(x+α 1) называется первой или основной гармоникой, (a 2 cos2x+b 2 sin2x) или c 2 sin(2x+α 2) называется второй гармоникой и так далее.

Для точного представления сложного сигнала обычно требуется бесконечное количество членов. Однако во многих практических задачах достаточно рассмотреть только несколько первых членов.

Ряд Фурье непериодических функций с периодом 2π.

Разложение непериодических функций.

Если функция f(x) непериодическая, значит, она не может быть разложена в ряд Фурье для всех значений х. Однако можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π.

Если задана непериодическая функция, можно составить новую функцию, выбирая значения f(x) в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π. Поскольку новая функция является периодической с периодом 2π, ее можно разложить в ряд Фурье для всех значений х. Например, функция f(x)=x не является периодической. Однако, если необходимо разложить ее в ряд Фурье на интервале от о до 2π, тогда вне этого интервала строится периодическая функция с периодом 2π (как показано на рис. ниже) .

Для непериодических функций, таких как f(x)=х, сумма ряда Фурье равна значению f(x) во всех точках заданного диапазона, но она не равна f(x) для точек вне диапазона. Для нахождения ряда Фурье непериодической функции в диапазоне 2π используется все таже формула коэффициентов Фурье.

Четные и нечетные функции.

Говорят, функция y=f(x) четная , если f(-x)=f(x) для всех значений х. Графики четных функций всегда симметричны относительно оси у (т.е. являются зеркально отраженными). Два примера четных функций: у=х 2 и у=cosx.

Говорят, что функция y=f(x) нечетная, если f(-x)=-f(x) для всех значений х. Графики нечетных функций всегда симметричны относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Разложение в ряд Фурье по косинусам.

Ряд Фурье четной периодической функции f(x) с периодом 2π содержит только члены с косинусами (т.е. не содержит членов с синусами) и может включать постоянный член. Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье нечетной периодической функции f(x) с периодом 2π содержит только члены с синусами (т.е. не содержит членов с косинусами).

Следовательно,

где коэффициенты ряда Фурье,

Ряд Фурье на полупериоде.

Если функция определена для диапазона, скажем от 0 до π, а не только от 0 до 2π, ее можно разложить в ряд только по синусам или тольо по косинусам. Полученный ряд Фурье называется рядом Фурье на полупериоде.

Если требуется получить разложение Фурье на полупериоде по косинусам функции f(x) в диапазоне от 0 до π, то необходимо составить четную периодическую функцию. На рис. ниже показана функция f(x)=х, построенная на интервале от х=0 до х=π. Поскольку четная функция симметрична относительно оси f(x), проводим линию АВ, как показано на рис. ниже. Если предположить, что за пределами рассмотренного интервала полученная треугольная форма является периодической с периодом 2π, то итоговый график имеет вид, показ. на рис. ниже. Поскольку требуется получить разложение Фурье по косинусам, как и ранее, вычисляем коэффициенты Фурье a o и a n

Если требуется получить разложение Фурье на полупериоде по синусам функции f(x) в диапазоне от 0 до π, то необходимо составить нечетную периодическую функцию. На рис. ниже показана функция f(x)=x, построенная на интервале от от х=0 до х=π. Поскольку нечетная функция симметрична относительно начала координат, строим линию CD, как показано на рис. Если предположить, что за пределами рассмотренного интервала полученный пилообразный сигнал является периодическим с периодом 2π, то итоговый график имеет вид, показанный на рис. Поскольку требуется получить разложение Фурие на полупериоде по синусам, как и ранее, вычисляем коэффициент Фурье. b

Ряд Фурье для произвольного интервала.

Разложение периодической функции с периодом L.

Периодическая функция f(x) повторяется при увеличении х на L, т.е. f(x+L)=f(x). Переход от рассмотренных ранее функций с периодом 2π к функциям с периодом L довольно прост, поскольку его можно осуществить с помощью замены переменной.

Чтобы найти ряд Фурье функции f(x) в диапазоне -L/2≤x≤L/2, введем новую переменную u таким образом, чтобы функция f(x) имела период 2π относительно u. Если u=2πх/L, то х=-L/2 при u=-π и х=L/2 при u=π. Также пусть f(x)=f(Lu/2π)=F(u). Ряд Фурье F(u) имеет вид

(Пределы интегрирования могут быть заменены на любой интервал длиной L, например, от 0 до L)

Ряд Фурье на полупериоде для функций, заданных в интервале L≠2π.

Для подстановки u=πх/L интервал от х=0 до х=L соответствует интервалу от u=0 до u=π. Следовательно, функцию можно разложить в ряд только по косинусам или только по синусам, т.е. в ряд Фурье на полупериоде .

Разложение по косинусам в диапазоне от 0 до L имеет вид

Ряды Фурье – способ представления сложной функции суммой более простых, хорошо известных.
Синус и косинус – это периодические функции. Еще они образуют ортогональный базис. Это свойство можно объяснить по аналогии с осями X X X и Y Y Y на координатной плоскости. Точно так же, как мы можем описать координаты точки относительно осей, мы можем описать любую функцию относительно синусов и косинусов. Тригонометрические функции хорошо изучены и их легко применять в математике.

Представить синусы и косинусы можно в виде таких волн:

Синие – это косинусы, красные – синусы. Еще такие волны называют гармониками. Косинусы – четными, синусы – нечетными. Термин гармоника пришел еще из античности и связан с наблюдениями о взаимосвязи высот звуков в музыке.

Что такое ряд Фурье

Такой ряд, где в качестве простейших используются функции синуса и косинуса, называется тригонометрическим. Назван он в честь своего изобретателя Жана Батиста Жозефа Фурье, в конце XVIII–начале XIX в. доказавшего, что любую функцию можно представить в виде комбинации таких гармоник. И чем больше их взять, тем точнее это представление будет. Для примера картинка ниже: можно заметить, что с большим количеством гармоник, т. е. членов ряда Фурье, красный график становится все ближе к синему – исходной функции.

Практическое применение в современном мире

А вообще нужны ли эти ряды сейчас? Где они могут применяться практически и использует ли их кто-то кроме математиков-теоретиков? Оказывается, Фурье потому и знаменит на весь мир, что практическая польза его рядов буквально неисчислима. Их удобно применять там, где есть какие-либо колебания или волны: акустика, астрономия, радиотехника и т. д. Самый простой пример его использования: механизм работы фотоаппарата или видеокамеры. Если объяснять вкратце, эти устройства записывают не просто картинки, а коэффициенты рядов Фурье. И работает это везде – при просмотре картинок в интернете, фильма или прослушивании музыки. Именно благодаря рядам Фурье вы сейчас можете прочитать эту статью со своего мобильного телефона. Без преобразования Фурье нам не хватило бы никакой пропускной способности интернет-соединений, чтобы просто посмотреть видео на YouTube даже в стандартном качестве.

На этой схеме двухмерное преобразование Фурье, которое используется для разложения изображения на гармоники, т. е. базисные составляющие. На этой схеме черным закодировано значение -1, белым 1. Вправо и вниз по графику увеличивается частота.

Разложение в ряд Фурье

Наверное, вы уже устали читать, поэтому перейдем к формулам.
Для такого математического приема, как разложение функций в ряд Фурье, придется брать интегралы. Много интегралов. В общем виде ряд Фурье записывают в виде бесконечной суммы:

F (x) = A + ∑ n = 1 ∞ (a n cos ⁡ (n x) + b n sin ⁡ (n x)) f(x) = A + \displaystyle\sum_{n=1}^{\infty}(a_n \cos(nx)+b_n \sin(nx)) f (x ) = A + n = 1 ​ (a n cos (n x ) + b n sin (n x ) )
где
A = 1 2 π ∫ − π π f (x) d x A = \frac{1}{2\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)dx A = 2 π 1 − π π ​ f (x ) d x
a n = 1 π ∫ − π π f (x) cos ⁡ (n x) d x a_n = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)\cos(nx)dx a n = π 1 − π π ​ f (x ) cos (n x ) d x
b n = 1 π ∫ − π π f (x) sin ⁡ (n x) d x b_n = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)\sin(nx)dx b n = π 1 − π π ​ f (x ) sin (n x ) d x

Если мы каким-то образом сможем посчитать бесконечное количество a n a_n a n и b n b_n b n (они и называются коэффициентами разложения Фурье, A A A - это просто постоянная этого разложения), то полученный ряд в результате будет на 100% совпадать с исходной функцией f (x) f(x) f (x ) на отрезке от − π -\pi − π до π \pi π . Такой отрезок обусловлен свойствами интегрирования синуса и косинуса. Чем больше n n n , для которого мы рассчитаем коэффициенты разложения функции в ряд, тем точнее будет это разложение.

Пример

Возьмем простую функцию y = 5 x y=5x y = 5 x
A = 1 2 π ∫ − π π f (x) d x = 1 2 π ∫ − π π 5 x d x = 0 A = \frac{1}{2\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)dx = \frac{1}{2\pi}\displaystyle\int\limits_{-\pi}^{\pi} 5xdx = 0 A = 2 π 1
− π π ​ f (x ) d x = 2 π 1 − π π ​ 5 x d x = 0
a 1 = 1 π ∫ − π π f (x) cos ⁡ (x) d x = 1 π ∫ − π π 5 x cos ⁡ (x) d x = 0 a_1 = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)\cos(x)dx = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} 5x\cos(x)dx = 0 a 1 = π 1 − π π ​ f (x ) cos (x ) d x = π 1 − π π ​ 5 x cos (x ) d x = 0
b 1 = 1 π ∫ − π π f (x) sin ⁡ (x) d x = 1 π ∫ − π π 5 x sin ⁡ (x) d x = 10 b_1 = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)\sin(x)dx = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} 5x\sin(x)dx = 10 b 1 = π 1 − π π ​ f (x ) sin (x ) d x = π 1 − π π ​ 5 x sin (x ) d x = 1 0
a 2 = 1 π ∫ − π π f (x) cos ⁡ (2 x) d x = 1 π ∫ − π π 5 x cos ⁡ (2 x) d x = 0 a_2 = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)\cos(2x)dx = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} 5x\cos(2x)dx = 0 a 2 = π 1 − π π ​ f (x ) cos (2 x ) d x = π 1 − π π ​ 5 x cos (2 x ) d x = 0
b 2 = 1 π ∫ − π π f (x) sin ⁡ (2 x) d x = 1 π ∫ − π π 5 x sin ⁡ (2 x) d x = − 5 b_2 = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} f(x)\sin(2x)dx = \frac{1}{\pi}\displaystyle\int\limits_{-\pi}^{\pi} 5x\sin(2x)dx = -5 b 2 = π 1 π π f (x ) sin (2 x ) d x = π 1 π π 5 x sin (2 x ) d x = 5

И так далее. В случае с такой функцией мы можем сразу сказать, что все a n = 0 a_n=0

5 x ≈ 10 ⋅ sin ⁡ (x) − 5 ⋅ sin ⁡ (2 ⋅ x) + 10 3 ⋅ sin ⁡ (3 ⋅ x) − 5 2 ⋅ sin ⁡ (4 ⋅ x) 5x \approx 10 \cdot \sin(x) - 5 \cdot \sin(2 \cdot x) + \frac{10}{3} \cdot \sin(3 \cdot x) - \frac{5}{2} \cdot \sin (4 \cdot x)

График получившейся функции будет выглядеть следующим образом:


Получившееся разложение в ряд Фурье приближается к нашей исходной функции. Если мы возьмем большее количество членов ряда, например, 15, то увидим уже следующее:


Чем больше членов разложения в ряд, тем выше точность.
Если мы немного изменим масштаб графика, сможем заметить еще одну особенность преобразования: ряд Фурье – это периодическая функция с периодом 2 π 2\pi

Таким образом, можно представлять любую функцию, которая является непрерывной на отрезке [ − π ; π ] [-\pi;\pi]

Лучшие статьи по теме