Букеты, живые цветы, комнатные растения

Современные методы измерения скорости света. Определение скорости свет

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.


Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца. Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты. В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. К началу 70-х погрешность в измерениях снизилась до 1 км/сек. В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

Существуют различные методы измерения скорости света, в том числе астрономические и с использованием различной экспериментальной техники. Точность измерения величины С постоянно увеличивается. В таблице дан неполный перечень экспериментальных работ по определению скорости света.

Дата

Эксперимент

Экспериментальные методы

Результаты измерений, км/сек

1676

1725

1849

1850

1857

1868

1875

1880

1883

1883

1901

1907

1928

1932

1941

1952

Рёмер

Брадли

Физо

Фуко

Вебер-Кольрауш

Максвелл

Корню

Майкельсон

Томсон

Ньюкомб

Перротин

Роза и дорси

Миттелыптедта

Пиз и Пирсона

Андерсон

Фрум

Затмение спутника Юпитера

Абберация света

Движущие тела

Вращающиеся зеркала

Электромагнитные постоянные

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Вращающиеся зеркала

Вращающиеся зеркала

Электромагнитные постоянные

Ячейка затвора Керра

Вращающиеся зеркала

Ячейка затвора Керра

Микроволновая интерферометрия

214 459

308 000

313 290

298 000

310 000

288 000

299 990

299 910

282 000

299 880

299 777

299 784

299 778

299 774

299 782

299 792.45

Первое удачное измерение скорость света относится к 1676 г.

На рисунках представлены репродукция рисунка самого Рёмера, а также схематическая трактовка.

Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера . Юпитер имеет нескольк о спутников, которые либо видны с Земли вблизи Юпитера, либо

скрываются в его тени. Астрономические наблюдения над спу тниками Юпитера показывают, что средний промежуток вре мени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений. На рисунке: Метод Ремера. С - солнце, Ю - юпитер, З – земля.

Пусть в определенный момент времени Земля З1 и Юпитер Ю1 находятся в противоположении, и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера (спутник на рисунке не показан). Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и через c – скорость св ета в системе координат, связанной с Солнцем С, на Земле уход спутника в тень Юпитера будет зарегистрирован на (R-r)/с секунд позже, чем он совершается во временной системе отчета, связанной с Юпитером.

По истечении 0,545 года Земля З2 и Юпитер Ю2 находятся в соединении. Если в это время происходит n-е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на (R+r)/с секунд. Поэтому, если период обращения спутника вокруг Юпитера t, то промежуток времени T1, протекающий между первым и n-м затмениями, наблюдавшимися с Земли, равен

По истечении еще 0,545 года Земля З3 и Юпитер Ю3 будут вновь находиться в противостоянии. За это время совершилось (n-1) оборотов спутника вокруг Юпитера и (n-1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З2 и Ю2, а последнее – когда они занимали положение З3 и Ю3. Первое затмение наблюдалось на Земле с запозданием (R+r)/с, а последнее с запозданием (R-r)/c по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем

Рёмер измерил промежутки времени Т1 и Т2 и нашел, что Т1-Т2=1980 с. Но из написанных выше формул следует, что Т1-Т2=4r/с, поэтому с=4r/1980 м/с. Принимая r, среднее расстояние от Земли до Солнца, равным 1500000000 км, находим для скорости света значение 3,01*10 6 м/с.

Этот результат был первым измерением скорости света.

В 1725 г. Джеймс Брэдли обнаружил, что звезда Дракона, находящаяся в зените (т.е. непосредственно над головой), совершает кажущееся движение с периодом в один год по почти круговой орбите с диаметром равным 40,5 дуговой секунды. Для звезд, видимых в других местах небесного свода, Брэдли также наблюдал подобное кажущееся движение - в общем случае эллиптическое.

Явление, наблюдавшееся Брэдли, называется аберрацией. Оно не имеет ничего общего с собственным движением звезды. Причина аберрации заключается в том, что величина скорости света конечна, а наблюдение ведется с Земли, движущейся по орбите с некоторой скоростью v.

Угол раствора конуса, под которым с Земли видна кажущаяся траектория звезды, определяется выражением: tgα=ν/c

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c.

У него получилось значение скорости света равной 308000 км/с.

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо . Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

На рис представлена схема опыта по определению скорости света методом зубчатого колеса.

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

В течение всей своей жизни американский физик Альберт Абрахам Майкельсон (1852–1931) совершенствовал методику измерения скорости света. Создавая все более сложные установки, он пытался получить результаты с минимальной погрешностью. В 1924–1927 годах Майкельсон разработал схему опыта, в котором луч света посылался с вершины горы Вильсон на вершину Сан-Антонио (расстояние порядка 35 км). В качестве вращающегося затвора было использовано вращающееся зеркало, изготовленное с чрезвычайной точностью и приводимое в движение специально разработанным высокоскоростным ротором, делающим до 528 оборотов в секунду.

Изменяя частоту вращения ротора, наблюдатель добивался возникновения в окуляре устойчивого изображения источника света. Знание расстояния между установками и частоты вращения зеркала позволяли вычислить скорость света.

Начиная с 1924 года и до начала 1927 года было проведено пять независимых серий наблюдений, повышалась точность измерения расстояния и частоты вращения ротора. Средний результат измерений составил 299 798 км в секунду.

Результаты же всех измерений Майкельсона можно записать как c = (299796 ± 4) км/с.

На верхнем рисунке изображена схема опыта Майкельсона. На нижнем рисунке представлена упрощенная схема опыта. Пользователь может изменять частоту вращения восьмиугольной призмы, наблюдая за движением светового импульса и добиваясь его попадания в окуляр наблюдателя.

Частоту можно изменять от 0 до 1100 оборотов в секунду с шагом 2 с –1 . Чтобы легче было выставлять частоту в эксперименте, сделана ручка грубого регулятора частоты вращения, более точные настройки можно выставлять с помощью дополнительных клавиш справа от окна частоты. Оптимальный результат достигается при 528 и 1056 оборотах в секунду. При 0 оборотов рисуется статичный луч света от источника до наблюдателя.

Пример расчета скорости света для эксперимента, при котором появление света наблюдатель фиксирует при частоте вращения зеркала 528 с –1 .

Здесь ν и T – частота и период вращения восьмигранной призмы, τ 1 – время, за которое световой пучок успевает пройти расстояние L от одной установки до другой и вернутся обратно, оно же – время поворота одной грани зеркала.

По материалам www.school-collection.edu.ru

Первое экспериментальное подтверждение конечности величины скорости света было дано Рёмером в 1676 г. Он обнаружил, что движение Ио, крупнейшего спутника Юпитера, совершается не совсем регулярно по времени. Было установлено, что нарушается периодичность затмений Ио Юпитером. За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин. Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.).

Скорость света, измеренная Рёмером была равна 2

c Рёмера = 214300 км/с. (4)

Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Аберрация света звезд

В 1725 г. Джеймс Брэдли обнаружил, что звезда γ Дракона, находящаяся в зените (т.е. непосредственно над головой), совершает кажущееся движение с периодом в один год по почти круговой орбите с диаметром равным 40,5 дуговой секунды. Для звезд, видимых в других местах небесного свода, Брэдли также наблюдал подобное кажущееся движение - в общем случае эллиптическое.

Явление, наблюдавшееся Брэдли, называется аберрацией . Оно не имеет ничего общего с собственным движением звезды. Причина аберрации заключается в том, что величина скорости света конечна, а наблюдение ведется с Земли, движущейся по орбите с некоторой скоростью v .

Зная угол α и скорость движения Земли по орбите v , можно определить скорость света c .

Методы измерения, основанные на применении зубчатых колес и вращающихся зеркал

Смотри Берклеевский Курс Физики (БКФ), Механика, стр. 337.

Метод объемного резонатора

Можно очень точно определить частоту, при которой в объемном резонаторе известных размеров укладывается определенное число длин полуволн электромагнитного излучения. Скорость света определяется из соотношения

где λ - длина волны, а ν - частота света (см. БКФ, механика, стр. 340).

Метод Шоран

Смотри БКФ, Механика, стр. 340.

Применение индикатора модулированного света

Смотри БКФ, Механика, стр. 342.

Методы, основанные на независимом определении длины волны и частоты лазерного излучения

В 1972 г. скорость света была определена на основе независимых измерений длины волны λ и частоты света ν . Источником света служил гелий-неоновый лазер (λ = 3.39 мкм). Полученное значение c = λν = 299792458± 1.2 м/с. (cм. Д.В.Сивухин, Оптика, стр. 631).

Независимость скорости света от движения источника или приемника

В 1887 г. знаменитый опыт Майкельсона и Морли окончательно установил, что скорость света не зависит от направления его распространения по отношению к Земле. Тем самым была основательно подорвана существовавшая тогда теория эфира (см. БКФ, Механика, стр. 353).

Баллистическая гипотеза

Отрицательный результат опытов Майкельсона и Морли могла бы объяснить так называемая баллистическая гипотеза, согласно которой скорость света в вакууме постоянна и равна c только относительно источника. Если же источник света движется со скоростью v относительно какой-либо системы отсчета, то скорость света c " в этой системе отсчета векторно складывается из c и v , т.е. c " = c + v (как это происходит со скоростью снаряда при стрельбе из движущегося орудия).

Опровергают эту гипотезу астрономические наблюдения за движением двойных звезд (Ситтер, голландский астроном, 1913 г.).

Действительно, допустим, что баллистическая гипотеза верна. Для простоты предположим, что компоненты двойной звезды вращаются вокруг их центра масс по круговым орбитам в той же плоскости, в которой расположена Земля. Проследим за движением одной из этих двух звезд. Пусть скорость ее движения по круговой орбите равна v . В том положении звезды, когда она удаляется от Земли вдоль соединяющей их прямой, скорость света (относительно Земли) равна c v , а в положении, когда звезда приближается, равна c +v . Если отсчитывать время от момента, когда звезда находилась в первом положении, то свет из этого положения дойдет до Земли в момент t 1 = L /(c v ), где L - расстояние до звезды. А из второго положения свет дойдет в момент t 2 = T /2+L /(c +v ), где T - период обращения звезды

(7)

При достаточно большом L , t 2 <t 1 , т.е. звезда была бы видна одновременно в двух (или нескольких положениях) или даже вращалась бы в противоположном направлении. Но этого никогда не наблюдалось.

Опыт Саде

Саде в 1963 г. выполнил красивый опыт, показывающий, что скорость γ -лучей постоянна независимо от скорости движения источника (см. БКФ, Механика, стр. 372).

В своих опытах он использовал аннигиляцию при пробеге позитронов. При аннигиляции центр масс системы, состоящей из электрона и позитрона, движется со скоростью около (1/2)c , а в результате аннигиляции испускаются два γ -кванта. В случае аннигиляции в неподвижном состоянии оба γ -кванта испускаются под углом 180 ° и их скорость равна c . В случае аннигиляции при пробеге этот угол меньше 180 ° и зависит от скорости позитрона. Если бы скорость γ -кванта складывалась со скоростью центра масс согласно классическому правилу сложения векторов, то γ -квант, движущийся с некоторой составляющей скорости в направлении пробега позитрона, должен был бы иметь скорость бóльшую, чем c , а тот γ -квант, который имеет составляющую скорости в противоположном направлении, должен иметь скорость меньшую, чем c . Оказалось, что при одинаковых расстояниях между счетчиками и пунктом аннигиляции оба γ -кванта достигают счетчиков в одно и то же время. Это доказывает, что и при движущемся источнике оба γ -кванта распространяются с одинаковой скоростью.

Предельная скорость

Опыт Бертоцци 1964 г.

Следующий опыт иллюстрирует утверждение, что нельзя ускорить частицу до скорости, превышающей скорость света c . В этом опыте электроны ускорялись последовательно все более сильными электростатическими полями в ускорителе Ван-де-Граафа, а затем они двигались с постоянной скоростью через пространство, свободное от поля.

Время их полета на известном расстоянии AB, а следовательно и их скорость, измерялись непосредственно, а кинетическая энергия (переходящая в тепло при ударе о мишень в конце пути) измерялась с помощью термопары.

В этом опыте с большой точностью была определена величина ускоряющего потенциала φ . Кинетическая энергия электрона равна

Если через сечение пучка пролетает N электронов в секунду, то мощность, передаваемая алюминиевой мишени в конце их пути, должна быть равна 1,6· 10 –6 N эрг/сек. Это в точности совпадало с непосредственно определенной (с помощью термопары) поглощенной мишенью мощностью. Таким образом подтверждалось, что электроны отдавали мишени всю кинетическую энергию, полученную в ходе их ускорения.

Из этих экспериментов следует, что электроны получали от ускоряющего поля энергию, пропорциональную приложенной разности потенциалов, но их скорость не могла тем не менее увеличиваться беспредельно и приближалась к значению скорости света в вакууме.

Многие другие эксперименты, как и описанный выше, свидетельствуют о том, что c - это верхний предел скорости частиц. Таким образом мы твердо убеждаемся, что c - это максимальная скорость передачи сигнала как с помощью частиц, так и с помощью электромагнитных волн; c - это предельная скорость.

Вывод:

1. Величина c инвариантна для инерциальных систем отсчета.

2. c - максимальная возможная скорость передачи сигнала.

Относительность времени

Уже в классической механике пространство относительно, т.е. пространственные соотношения между различными событиями зависят от того, в какой системе отсчета они описываются. Утверждение о том, что два разновременных события происходят в одном и том же месте пространства или на определенном расстоянии друг относительно друга, приобретает смысл только тогда, когда указано, к какой системе отсчета это утверждение относится. Пример: мячик, подпрыгивающий на столе в купе вагона поезда. С точки зрения пассажира, находящегося в купе, мячик ударяется о стол примерно в одном и том же месте стола. С точки зрения наблюдателя на платформе каждый раз координата мячика другая, поскольку поезд вместе со столом двигается.

Напротив, время является в классической механике абсолютным. Это значит, что время течет одинаково в разных системах отсчета. Например, если какие-нибудь два события являются одновременными для одного наблюдателя, то они будут одновременными и для любого другого. В общем случае промежуток времени между двумя данными событиями одинаков во всех системах отсчета.

Можно, однако, убедиться в том, что понятие абсолютного времени находится в глубоком противоречии с эйнштейновским принципом относительности. Вспомним для этого, что в классической механике, основанной на понятии абсолютного времени, имеет место общеизвестный закон сложения скоростей. Но этот закон в применении к свету гласит, что скорость света c " в системе отсчета K " , движущейся со скоростью V относительно системы K , связана со скоростью света c в системе K соотношением

т.е. скорость света оказывается различной в разных системах отсчета. Это, как мы уже знаем, противоречит принципу относительности и опытным данным.

Таким образом, принцип относительности приводит к результату, что время не является абсолютным. Оно течет по-разному в разных системах отсчета. Поэтому утверждение, что между двумя данными событиями прошел определенный промежуток времени, приобретает смысл, только если при этом указано, к какой системе отсчета это относится. В частности, события, одновременные в некоторой системе отсчета, будут не одновременными в другой системе.

Поясним это на простом примере.

Рассмотрим две инерциальные системы координат K и K " с осями координат xyz и x " y " z " , причем система K " движется относительно системы K вправо вдоль осей x и x " (рис. 8). Пусть из некоторой точки A на оси x " одновременно отправляются сигналы в двух взаимно противоположных направлениях. Поскольку скорость распространения сигнала в системе K " , как и во всякой инерциальной системе, равна (в обоих направлениях) c , то сигналы достигнут равноудаленных от A точек B и C в один и тот же момент времени (в системе K ").

Легко, однако, убедиться в том, что эти два события (приход сигналов в B и C ) будут не одновременными для наблюдателя в системе K . Для него тоже скорость света равна c в обоих направлениях, но точка B движется навстречу свету, так что ее свет достигнет раньше, а точка C удаляется от света и поэтому сигнал придет в нее позже.

Таким образом, принцип относительности Эйнштейна вносит фундаментальные изменения в основные физические понятия. Основанные на повседневном опыте, наши представления о пространстве и времени оказываются лишь приближенными, связанными с тем, что в обыденной жизни мы имеем дело только со скоростями, очень малыми по сравнению со скоростью света.

1 О взаимодействии, распространяющемся от одной частицы к другой, часто говорят как о "сигнале", отправляющемся от первой частицы и "дающем знать" второй о том изменении, которое произошло с первой. О скорости распространения взаимодействий говорят часто как о "скорости сигнала".

2 Период обращения Юпитера вокруг Солнца приблизительно 12 лет, период обращения Ио вокруг Юпитера равен 42 часам.


ЛЕКЦИЯ 2

· Интервал. Геометрия Минковского. Инвариантность интервала.

· Времениподобный и пространственноподобный интервалы.

· Абсолютно будущие события, абсолютно прошедшие события,

абсолютно удаленные события.

· Световой конус.

Интервал

В теории относительности часто используется понятие события . Событие определяется местом, где оно произошло, и временем, когда оно произошло. Таким образом, событие, произошедшее с некоторой материальной частицей, определяется тремя координатами этой частицы и моментом времени, когда это событие произошло: x , y , z и t .

В дальнейшем из соображений наглядности мы будем пользоваться воображаемым четырехмерным пространством, на осях которого откладываются три пространственные координаты и время. В этом пространстве любое событие изображается точкой. Эти точки называются мировыми точками . Всякой частице соответствует некоторая линия - мировая линия в этом четырехмерном пространстве. Точки этой линии определяют координаты частицы во все моменты времени. Если частица покоится или движется равномерно и прямолинейно, то ей соответствует прямая мировая линия.

Выразим теперь принцип инвариантности величины скорости света 1 математически. Для этого рассмотрим две инерциальные системы отсчета K и K " , движущиеся друг относительно друга с постоянной скоростью. Координатные оси выберем так, чтобы оси x и x " совпадали, а оси y и z были бы параллельны осям y " и z ". Время в системах K и K " обозначим через t и t ".

Пусть первое событие состоит в том, что из точки с координатами x 1 , y 1 , z 1 в момент времени t 1 (в системе отсчета K ) отправляется сигнал, распространяющийся со скоростью света. Будем наблюдать из системы отсчета K за распространением этого сигнала. Пусть второе событие состоит в том, что этот сигнал приходит в точку x 2 , y 2 , z 2 в момент времени t 2 . Поскольку сигнал распространяется со скоростью света c , пройденное им расстояние равно c (t 2 –t 1). С другой стороны, это же расстояние равно:

В результате оказывается справедливым следующее соотношение между координатами обоих событий в системе K

Если x 1 , y 1 , z 1 , t 1 и x 2 , y 2 , z 2 , t 2 - координаты каких-либо двух событий, то величина

Геометрия Минковского

Если два события бесконечно близки друг другу, то для интервала ds между ними имеем

ds 2 = c 2 dt 2 –dx 2 –dy 2 –dz 2 . (4)

Форма выражений (3) и (4) позволяет рассматривать интервал, с формальной математической точки зрения, как "расстояние" между двумя точками в воображаемом четырехмерном пространстве (на осях которого откладываются значения x , y , z и произведение ct ). Имеется, однако, существенное отличие в правиле составления этой величины по сравнению с правилами обычной евклидовой геометрии: при образовании квадрата интервала квадрат разности координат по временной оси входит со знаком плюс, а квадраты разностей пространственных координат - со знаком минус. Такую четырехмерную геометрию, определяемую квадратичной формой (4), называют псевдоевклидовой в отличие от обычной, евклидовой, геометрии. Эта геометрия в связи с теорией относительности была введена Г.Минковским.

Инвариантность интервала

Как мы показали выше, если ds = 0 в некоторой инерциальной системе отсчета, то ds " = 0 в любой другой инерциальной системе. Но ds и ds " - бесконечно малые величины одинакового порядка малости. Поэтому в общем случае из этих двух условий следует, что ds 2 и ds " 2 должны быть пропорциональны друг другу:

ds 2 = a ds " 2 . (5)

Коэффициент пропорциональности a может зависеть только от абсолютной величины относительной скорости V обеих инерциальных систем. Он не может зависеть от координат и времени, так как тогда различные точки пространства и моменты времени были бы неравноценны, что противоречит однородности пространства и времени. Он не может также зависеть от направления относительной скорости V , так как это противоречило бы изотропии пространства.

Рассмотрим три инерциальных системы отсчета K , K 1 и K 2 . Пусть V 1 и V 2 - скорости движения систем K 1 и K 2 относительно системы K . Тогда имеем

Но скорость V 12 зависит не только от абсолютных величин векторов V 1 и V 2 , но и от угла α между ними. 2 Между тем последний вообще не входит в левую часть соотношения (8). Поэтому это соотношение может выполняться, лишь если функция a (V ) = const = 1.

Таким образом,

Мы пришли, таким образом, к очень важному результату:

Эта инвариантность и является математическим выражением постоянства скорости света.

Эффект Доплера в оптике

Экспериментальные основания специальной теории относительности

Современные методы измерения скорости света

Распространение света в движущихся средах

Классические опыты по измерению скорости света

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов. Точные лабораторные методы определения скорости света, выработанные в последствии, используются при геодезической съёмке.

Основная трудность, на которую наталкивается экспериментатор при определении скорости распространения света, связана с огромным значением этой величины, требующим совсем иных масштабов опыта, чем те, которые имеют место в классических физических измерениях. Эта трудность дала себя знать в первых научных попытках определения скорости света, предпринятых ещё Галилеем (1607 г.). Опыт Галилея состоял в следующем: два наблюдателя на большом расстоянии друг о


друга снабжены закрывающимися фонарями. Наблюдатель А открывает фонарь; через известный промежуток времени свет дойдет до наблюдателя В, который в тот же момент открывает свой фонарь; спустя определенное время этот сигнал дойдет до А , и последний может, таким образом, отметить время τ , протекшее от момента подачи им сигнала до момента его возвращения. Предполагая, что наблюдатели реагируют на сигнал мгновенно и что свет обладает одной и той же скоростью в направлении АВ и ВА, получим, что путь АВ +ВА =2D свет проходит за время τ , т.е. скорость света с =2D /τ . Второе из сделанных допущений может считаться весьма правдоподобным. Современная теория относительности возводит даже это допущение в принцип. Но предположение о возможности мгновенно реагировать на сигнал не соответствует действительности, и поэтому при огромной скорости света попытка Галилея не привела ни к каким результатам; по существу, измерялось не время распространения светового сигнала, а время, потраченное наблюдателем на реакцию. Положение можно улучшить, если наблюдателя В заменить зеркалом, отражающим свет, освободившись таким образом от ошибки, вносимой одним из наблюдателей. Эта схема измерений осталась, по существу, почти во всех современных лабораторных приемах определения скорости света; однако впоследствии были найдены превосходные приемы регистрации сигналов и измерения промежутков времени, что и позволило определить скорость света с достаточной точностью даже на сравнительно небольших расстояниях.



а) Метод Рёмера.

Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определённого спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Метод Рёмера (1676 г.), основанный на этих наблюдениях, можно пояснить с помощью рис.9.1. Пусть в определённый момент времени Земля З 1 и Юпитер Ю 1 находятся в противостоянии и в этот момент времени один из спутников Юпитера, наблюдаемый с Земли, исчезает в тени Юпитера. Тогда, если обозначить через R и r радиусы орбит Юпитера и Земли и через с – скорость света в системе координат, связанной с Солнцем, на Земле уход спутника в тень Юпитера будет зарегистрирован на секунд позже, чем он совершается во временной системе отсчёта, связанной с Юпитером.

По истечении 0,545 года Земля З 2 и Юпитер Ю 2 находятся в соединении . Если в это время происходит n -е затмение того же спутника Юпитера, то на Земле оно будет зарегистрировано с опозданием на секунд. Поэтому, если период обращения спутника вокруг Юпитера t , то промежуток времени T 1 , протекший между первым и n -м затмениями, наблюдавшимися с Земли, равен

По истечении ещё 0,545 года Земля З 3 и Юпитер Ю 3 будут вновь находиться в противостоянии . За это время совершились (n –1) оборотов спутника вокруг Юпитера и (n –1) затмений, из которых первое имело место, когда Земля и Юпитер занимали положения З 2 и Ю 2 , а последнее – когда они занимали положение З 3 и Ю 3 . Первое затмение наблюдалось на Земле с запозданием , а последнее с запозданием по отношению к моментам ухода спутника в тень планеты Юпитера. Следовательно, в этом случае имеем:

Рёмер измерил промежутки времени Т 1 и Т 2 и нашёл, что Т 1 –Т 2 =1980 с. Но из написанных выше формул следует, что Т 1 –Т 2 =, поэтому . Принимая r , среднее расстояние от Земли до Солнца, равным 150·10 6 км, находим для скорости света значение: с =301·10 6 м/с.

Этот результат был исторически первым измерением скорости света.

б) Определение скорости света по наблюдению аберрации.

В 1725-1728 гг. Брадлей предпринял наблюдения с целью выяснить, существует ли годичный параллакс звёзд, т.е. кажущееся смещение звёзд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды. Звезда в своём параллактическом движении должна описывать эллипс, угловые размеры которого тем больше, чем меньше расстояние до звезды.

Для звёзд, лежащих в плоскости эклиптики, этот эллипс вырождается в прямую, а для звёзд у полюса – в окружность. Брадлей действительно обнаружил подобное смещение. Но большая ось эллипса оказалась для всех звёзд имеющие одни и те же угловые размеры, а именно 2α =40",9. Брадлей объяснил (1728 г.) наблюдённое явление, названное им аберрацией света , конечностью скорости распространения света и использовал его для определения этой скорости. Годичный параллакс был установлен более ста лет спустя В.Я. Струве и Бесселем (1837, 1838 гг.).

Для простоты будем вместо телескопа пользоваться визирным приспособлением, состоящим из двух небольших отверстий, расположенных по оси трубы. Когда скорость Земли совпадает по направлению с SE , ось трубы указывает на звезду. Когда же скорость Земли (и трубы) составляет угол j с направлением на звезду, то для того, чтобы луч света оставался на оси трубы, трубу надо повернуть на угол a (рис. 9.2), ибо за время t , пока свет проходит путь SE , сама труба перемещается на расстояние E"Е =u 0 t . Из рис. 9.2 можно определить поворот a . Здесь SE определяет направление оси трубы без учёта аберрации, SE" – смещенное направление оси, обеспечивающее прохождение света вдоль оси трубы в течение всего времени t . Пользуясь тем, что угол a очень мал, так как u 0 <<с (пренебрегая членами порядка ), можно считать, чтоj =0 или p.

Если звезда находится в полюсе эклиптики, то j =90° в течение всего года, т.е. угловое отклонение звезды сохраняется неизменным по величине (); но так как направление вектора u 0 изменяется в течение года на угол 2p , то и угловое смещение звезды меняется по направлению: звезда описывает кажущуюся круговую орбиту с угловым радиусом .

В общем случае, когда звезда расположена на угловом расстоянии d от плоскости эклиптики, аберрационная траектория звезды представляет собой эллипс, большая полуось которого имеет угловые размеры a 0 , а малая – a 0 sind . Именно такой характер и носило кажущееся смещение звёзд по наблюдению Брадлея. Определив из наблюдений a 0 и зная u 0 , можно найти с. Брадлей нашёл с =308 000 км/с. В. Я. Струве (1845 г.) значительно улучшил точность наблюдений и получил a 0 =20",445. Самые последние определения дают a 0 =20",470, чему соответствует с =299 900 км/с.

Следует отметить, что аберрация света связана с изменением направления скорости Земли в течение года.

Лучшие статьи по теме