Букеты, живые цветы, комнатные растения
  • Главная
  • Орхидеи
  • Вычисление интегралов по формулам прямоугольников и трапеций. Оценка погрешности

Вычисление интегралов по формулам прямоугольников и трапеций. Оценка погрешности

Сначала формула в общем виде. Возможно, она будет не всем и не сразу понятна… да Карлссон с вами – практические примеры всё прояснят! Спокойствие. Только спокойствие.

Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на равных отрезков:
. При этом, очевидно: (нижний предел интегрирования) и (верхний предел интегрирования). Точки также называют узлами .

Тогда определенный интеграл можно вычислить приближенно по формуле трапеций :
, где:
– длина каждого из маленьких отрезков или шаг ;
– значения подынтегральной функции в точках .

Пример 1

Вычислить приближенно определенный интеграл по формуле трапеций. Результаты округлить до трёх знаков после запятой.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) Специально для чайников я привязал первый пункт к чертежу, который наглядно демонстрировал принцип метода. Если будет трудно, посматривайте на чертёж по ходу комментариев, вот его кусок:

По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: . Параметр , напоминаю, также называется шагом .

Сколько будет точек (узлов разбиения)? Их будет на одну больше , чем количество отрезков:

Таким образом, общая формула трапеций сокращается до приятных размеров:

Для расчетов можно использовать обычный микрокалькулятор:

Обратите внимание, что, в соответствии с условием задачи, все вычисления следует округлять до 3-его знака после запятой .

Окончательно:

Напоминаю, что полученное значение – это приближенное значение площади (см. рисунок выше).

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . Зачем это нужно? Чтобы Фобос-Грунт не падал в океан – увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

Как формируется вторая строка, думаю, всем видно – сначала записываем нижний предел интегрирования , остальные значения получаем, последовательно приплюсовывая шаг .

По какому принципу заполняется нижняя строка, тоже, думаю, практически все поняли. Например, если , то . Что называется, считай, не ленись.

В результате:

Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Таким образом, с большой долей уверенности можно утверждать, что, по крайне мере .

Пример 2

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).

Решение: Почти та же задача, но немного в другой формулировке. Принципиальное отличие от Примера 1 состоит в том, что мы не знаем , НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на те же 5 частей. Формула уже знакома:

И шаг, естественно, тоже известен:

Но возникает еще один вопрос, до какого разряда округлять результаты ? В условии же ничего не сказано о том, сколько оставлять знаков после запятой. Общая рекомендация такова: к требуемой точности нужно прибавить 2-3 разряда . В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):

В результате:

После первичного результата количество отрезков удваивают . В данном случае необходимо провести разбиение на 10 отрезков. И когда количество отрезков растёт, то в голову приходит светлая мысль, что тыкать пальцами в микрокалькулятор уже как-то надоело. Поэтому еще раз предлагаю закачать и использовать мой калькулятор-полуавтомат (ссылка в начале урока).

Для формула трапеций приобретает следующий вид:

В бумажной версии запись можно спокойно перенести на следующую строчку.

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:


При чистовом оформлении в тетрадь длинную таблицу выгодно превратить в двухэтажную.


Метод трапеций является одним из методов численного интегрирования. Он позволяет вычислять определенные интегралы с заранее заданной степенью точности.

Сначала опишем суть метода трапеций и выведем формулу трапеций. Далее запишем оценку абсолютной погрешности метода и подробно разберем решение характерных примеров. В заключении сравним метод трапеций с методом прямоугольников.

Навигация по странице.

Суть метода трапеций.

Поставим перед собой следующую задачу: пусть нам требуется приближенно вычислить определенный интеграл , где подынтегральная функция y=f(x) непрерывна на отрезке .

Разобьем отрезок на n равных интервалов длины h точками . В этом случае шаг разбиения находим как и узлы определяем из равенства .

Рассмотрим подынтегральную функцию на элементарных отрезках .

Возможны четыре случая (на рисунке показаны простейшие из них, к которым все сводится при бесконечном увеличении n ):


На каждом отрезке заменим функцию y=f(x) отрезком прямой, проходящей через точки с координатами и . Изобразим их на рисунке синими линиями:


В качестве приближенного значения интеграла возьмем выражение , то есть, примем .

Давайте выясним, что означает в геометрическом смысле записанное приближенное равенство. Это позволит понять, почему рассматриваемый метод численного интегрирования называется методом трапеций.

Мы знаем, что площадь трапеции находится как произведение полу суммы оснований на высоту. Следовательно, в первом случае площадь криволинейной трапеции приближенно равна площади трапеции с основаниями и высотой h , в последнем случае определенный интеграл приближенно равен площади трапеции с основаниями и высотой h , взятой со знаком минус. Во втором и третьем случаях приближенное значение определенного интеграла равно разности площадей красной и синей областей, изображенных на рисунке ниже.


Таким образом, мы подошли к сути метода трапеций , которая состоит в представлении определенного интеграла в виде суммы интегралов вида на каждом элементарном отрезке и в последующей приближенной замене .

Формула метода трапеций.

Как видите, требуемая точность достигнута.

Немного о погрешностях.

Теоретически приближенное значение определенного интеграла, вычисленное по методу трапеций, стремиться к истинному значению при . Однако следует учитывать тот факт, что промежуточные вычисления в своем большинстве проводятся приближенно, и при больших n начинает накапливаться вычислительная погрешность.

Взглянем на оценки абсолютных погрешностей метода трапеций и метода средних прямоугольников .

Можно ожидать вдвое меньшую погрешность для заданного n при использовании метода прямоугольников при одинаковом объеме вычислительной работы, то есть, использование этого метода как бы предпочтительнее. Это так и есть, когда известны значения функции в средних точках элементарных отрезков. Но иногда интегрируемые функции задаются не аналитически, а в виде множества значений в узлах. В этом случае мы не сможем применить формулу средних прямоугольников, но сможем воспользоваться методом трапеций.

Методы правых и левых прямоугольников уступают методу трапеций в точности результата для заданного числа разбиений отрезка интегрирования.

Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f (x) d x , подынтегральная функция которого y = f (x) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b - a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i - 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Выделим отрезки x i - 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f (x) отрезком прямой, который проходит через точки с координатами x i - 1 ; f x i - 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Возьмем выражение f (x i - 1) + f (x i) 2 · h в качестве приближенного значения интеграла ∫ x i - 1 x i f (x) d x . Т.е. примем ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f (x i - 1) , f (x i) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i - 1 x f (x) d x приближенно равен площади трапеции с основаниями - f (x i - 1) , - f (x i) и высотой h , которую необходимо взять со знаком « - ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i - 1 x i f (x) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f (x) d x в виде суммы интегралов вида ∫ x i - 1 x i f (x) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i - 1 x i f (x) d x ≈ f (x i - 1) + f (x i) 2 · h .

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i - 1 x i f (x) d x подставить их приближенные значения: ∫ x i - 1 x i f (x) d x = ∑ i = 1 n ∫ x i - 1 x i f (x) d x ≈ ∑ i = 1 n f (x i - 1) + f (x i) 2 · h = = h 2 · (f (x 0) + f (x 1) + f (x 1) + f (x 2) + f (x 2) + f (x 3) + . . . + f (x n)) = = h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) ⇒ ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Определение 1

Формула метода трапеций: ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

Определение 2

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2

Графическая иллюстрация метода трапеций приведена на рисунке:

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g (x) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Пример 1

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i - 1 x i f (x) d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n)

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b - a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f (x) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b - a n = 5 - 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0: x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 7 0 2 + 1 = 7 i = 1: x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10: x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 7 5 2 + 1 ≈ 0 , 2692

Внесем результаты вычислений в таблицу:

i 0 1 2 3 4 5 6 7 8 9 10
x i 0 0 . 5 1 1 , 5 2 2 , 5 3 3 , 5 4 4 , 5 5
f (x i) 7 5 , 6 3 , 5 2 , 1538 1 , 4 0 , 9655 0 , 7 0 , 5283 0 , 4117 0 , 3294 0 , 2692

Подставим полученные значения в формулу метода трапеций: ∫ 0 5 7 d x x 2 + 1 ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 0 , 5 2 · 7 + 2 · 5 , 6 + 3 , 5 + 2 , 1538 + 1 , 4 + 0 , 9655 + 0 , 7 + 0 , 5283 + 0 , 4117 + 0 , 3294 + 0 , 2692 = 9 , 6117

Сравним наши результаты с результатами, вычисленными по формуле Ньютона-Лейбница. Полученные значения совпадают до сотых.

Ответ: ∫ 0 5 7 d x x 2 + 1 = 9 , 6117

Пример 2

Вычислим по методу трапеций значение определенного интеграла ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x с точностью до 0 , 01 .

Решение

Согласно условию задачи a = 1 ; b = 2 , f (x) = 1 12 x 4 + 1 3 x - 1 60 ; δ n ≤ 0 , 01 .

Найдем n , которое равно количеству точек разбиения отрезка интегрирования, с помощью неравенства для оценки абсолютной погрешности δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 . Сделаем мы это следующим образом: мы найдем значения n , для которых будет выполняться неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01 . При данных n формула трапеций даст нам приближенное значение определенного интеграла с заданной точностью.

Для начала найдем наибольшее значение модуля второй производной функции на отрезке [ 1 ; 2 ] .

f " (x) = 1 12 x 4 + 1 3 x - 1 60 " = 1 3 x 3 + 1 3 ⇒ f "" (x) = 1 3 x 3 + 1 3 " = x 2

Вторая производная функция является квадратичной параболой f "" (x) = x 2 . Из ее свойств мы знаем, что она положительная и возрастает на отрезке [ 1 ; 2 ] . В связи с этим m a x x ∈ [ a ; b ] f "" (x) = f "" (2) = 2 2 = 4 .

В приведенном примере процесс нахождения m a x x ∈ [ a ; b ] f "" (x) оказался достаточно простым. В сложных случаях для проведения вычислений можно обратиться к наибольшим и наименьшим значениям функции. После рассмотрения данного примера мы приведем альтернативный метод нахождения m a x x ∈ [ a ; b ] f "" (x) .

Подставим полученное значение в неравенство m a x x ∈ [ a ; b ] f "" (x) · (b - a) 3 12 n 2 ≤ 0 , 01

4 · (2 - 1) 3 12 n 2 ≤ 0 , 01 ⇒ n 2 ≥ 100 3 ⇒ n ≥ 5 , 7735

Количество элементарных интервалов, на которые разбивается отрезок интегрирования n является натуральным числом. Для поведения вычислений возьмем n равное шести. Такое значение n позволит нам достичь заданной точности метода трапеций при минимуме расчетов.

Вычислим шаг: h = b - a n = 2 - 1 6 = 1 6 .

Найдем узлы x i = a + i · h , i = 1 , 0 , . . . , n , определим значения подынтегральной функции в этих узлах:

i = 0: x 0 = 1 + 0 · 1 6 = 1 ⇒ f (x 0) = f (1) = 1 12 · 1 4 + 1 3 · 1 - 1 60 = 0 , 4 i = 1: x 1 = 1 + 1 · 1 6 = 7 6 ⇒ f (x 1) = f 7 6 = 1 12 · 7 6 4 + 1 3 · 7 6 - 1 60 ≈ 0 , 5266 . . . i = 6: x 10 = 1 + 6 · 1 6 = 2 ⇒ f (x 6) = f (2) = 1 12 · 2 4 + 1 3 · 2 - 1 60 ≈ 1 , 9833

Результаты вычислений запишем в виде таблицы:

i 0 1 2 3 4 5 6
x i 1 7 6 4 3 3 2 5 3 11 6 2
f x i 0 , 4 0 , 5266 0 , 6911 0 , 9052 1 , 1819 1 , 5359 1 , 9833

Подставим полученные результаты в формулу трапеций:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ h 2 · f (x 0) + 2 ∑ i = 1 n - 1 f (x i) + f (x n) = = 1 12 · 0 , 4 + 2 · 0 , 5266 + 0 , 6911 + 0 , 9052 + 1 , 1819 + 1 , 5359 + 1 , 9833 ≈ 1 , 0054

Для проведения сравнения вычислим исходный интеграл по формуле Ньютона-Лейбница:

∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x = x 5 60 + x 2 6 - x 60 1 2 = 1

Как видим, полученной точности вычислений мы достигли.

Ответ: ∫ 1 2 1 12 x 4 + 1 3 x - 1 60 d x ≈ 1 , 0054

Для подынтегральных функций сложного вида нахождение числа n из неравенства для оценки абсолютной погрешности не всегда просто. В этом случае будет уместен следующий метод.

Обозначим приближенное значение определенного интеграла, которое было получено по методу трапеций для n узлов, как I n . Выберем произвольное число n . По формуле метода трапеций вычислим исходный интеграл при одинарном (n = 10) и удвоенном (n = 20) числе узлов и найдем абсолютную величину разности двух полученных приближенных значений I 20 - I 10 .

Если абсолютная величина разности двух полученных приближенных значений меньше требуемой точности I 20 - I 10 < δ n , то мы прекращаем вычисления и выбираем значение I 20 , которое можно округлить до требуемого порядка точности.

Если абсолютная величина разности двух полученных приближенных значений больше требуемой точности, то необходимо повторить действия с удвоенным количеством узлов (n = 40) .

Такой метод требует проведения большого объема вычислений, поэтому разумно использовать вычислительную технику для экономии времени.

Решим с помощью приведенного выше алгоритма задачу. С целью экономии времени опустим промежуточные вычисления по методу трапеций.

Пример 3

Необходимо вычислить определенный интеграл ∫ 0 2 x e x d x по методу трапеций с точностью до 0 , 001 .

Решение

Возьмем n равное 10 и 20 . По формуле трапеций получим I 10 = 8 , 4595380 , I 20 = 8 , 4066906 .

I 20 - I 10 = 8 , 4066906 - 8 , 4595380 = 0 , 0528474 > 0 , 001 , что требует продолжения вычислений.

Возьмем n равное 40: I 40 = 8 , 3934656 .

I 40 - I 20 = 8 , 3934656 - 8 , 4066906 = 0 , 013225 > 0 , 001 , что также требует продолжения вычислений.

Возьмем n равное 80: I 80 = 8 , 3901585 .

I 80 - I 40 = 8 , 3901585 - 8 , 3934656 = 0 , 0033071 > 0 , 001 , что требует проведения еще одного удвоения числа узлов.

Возьмем n равное 160: I 160 = 8 , 3893317 .

I 160 - I 80 = 8 , 3893317 - 8 , 3901585 = 0 , 0008268 < 0 , 001

Получить приближенное значение исходного интеграла можно округлив I 160 = 8 , 3893317 до тысячных: ∫ 0 2 x e x d x ≈ 8 , 389 .

Для сравнения вычислим исходный определенный интеграл по формуле Ньютона-Лейбница: ∫ 0 2 x e x d x = e x · (x - 1) 0 2 = e 2 + 1 ≈ 8 , 3890561 . Требуемая точность достигнута.

Ответ: ∫ 0 2 x e x d x ≈ 8 , 389

Погрешности

Промежуточные вычисления для определения значения определенного интеграла проводят в большинстве своем приближенно. Это значит, что при увеличении n начинает накапливаться вычислительная погрешность.

Сравним оценки абсолютных погрешностей метода трапеций и метода средних прямоугольников:

δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 12 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 12 n 2 δ n ≤ m a x x ∈ [ a ; b ] f "" (x) n · h 3 24 = m a x x ∈ [ a ; b ] f "" (x) · b - a 3 24 n 2 .

Метод прямоугольников для заданного n при одинаковом объеме вычислительной работы дает вдвое меньшую погрешность. Это делает метод более предпочтительным в тех случаях, когда известны значения функции в средних отрезках элементарных отрезков.

В тех случаях, когда интегрируемые функции задаются не аналитически, а в виде множества значений в узлах, мы можем использовать метод трапеций.

Если сравнивать точность метода трапеций и метода правых и левых прямоугольников, то первый метод превосходит второй в точности результата.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).
.

Решение : Мы не знаем , НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на 5 частей:

Шаг тоже известен:

Тут возникает еще один вопрос, до какого разряда округлять результаты ? Общая рекомендация такова:к требуемой точности нужно прибавить 2-3 разряда. В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):

В результате:

После первичного результата количество отрезков удваивают . В данном случае необходимо провести разбиение на 10 отрезков.

Для формула трапеций приобретает следующий вид:

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:

В результате:

Теперь рассчитаем, на сколько улучшился результат:

Здесь используем знак модуля, поскольку нас интересует абсолютная разность .

больше , чем требуемая точность:

Поэтому необходимо ещё раз удвоить количество отрезков разбиения до , и вычислить уже :

Снова оцениваем погрешность:

Полученная оценка погрешности меньше , чем требуемая точность:

Всё что осталось сделать, округлить последний (наиболее точный) результат до двух знаков после запятой и записать:

Ответ: с точностью до 0,01

Пример решения задачи 2.5 для одного интеграла см. в приложении 2.

Желательно проверить результаты расчетов значений определенных интегралов в математическом пакете Mathcad.


Приложение 1

Образец титульного листа


Приложение 1

Пример выполнения задания №2

Задача 2.1

Задача 2.2

Задача 2.3

Задача 2.4

Задача 2.5. (для одного интеграла)


Проверка результатов расчетов в Mathcad:

Формулы к задачам

Задача 2.1.


Задача 2.2.


Задача 2.3.


Задача 2.4.



Задача 2.5.

Аналогично выполнить расчет для второго интеграла согласно варианту задания.

Примечание: при расчете значений аргумента x используется абсолютная ссылка на ячейки. Обозначается абсолютная ссылка с помощью символа “$” на строку или столбец, или на строку и столбец одновременно, например, $B$12).

Абсолютная ссылка дает возможность ссылаться на одну и ту же ячейку при копировании формулы (в отличие от относительной ссылки). Таким образом, мы можем в первой строке сослаться на конкретную ячейку, скопировать ее и протянуть до конца списка. Весь список будет ссылаться на ту ячейку, в которой действует абсолютная ссылка. Соответственно при изменении этой ячейки меняется весь столбец или строка.

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

Пример 2. Ширина реки 26 м , промеры глубины в поперечном сечении реки через каждые 2 м дали, следующие результаты.

Лучшие статьи по теме